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Abstract. We study the behavior of the “full hierarchy” of integral manifolds, i.e., in par-

ticular those of stable, center-stable, center, center-unstable and unstable type, for nonau-

tonomous ordinary differential equations in Banach spaces under explicit one-step discretiza-
tion with varying step-sizes. Our main results on Cm−1-closeness under such discretizations

are formulated in a quantitative fashion and turn out to be an easy consequence of a general
theorem on the existence of invariant fiber bundles within the “calculus on time scales.”

This work is dedicated to the memory of our teacher Prof. Dr. Bernd Aulbach.
As an excellent teacher he introduced us to the theory of dynamical systems, advised us through-
out our studies and has always been an inspiration. As a mathematician he was full of ideas,
visions and plans. And even beyond mathematics we were benefitting from his humanity.

1. Introduction

This paper is concerned with analytical discretization theory of ordinary differential equations
(ODEs), i.e. the problem, which qualitative features of an ODE persist under discretization
with a numerical scheme. The research in this area essentially never leaves the framework of
classical continuous and discrete dynamical systems in the sense that one considers autonomous
differential equations and numerical methods with constant step-sizes (cf., e.g., [SH98]). This
approach has two drawbacks: On the one side, the study of differential equations near non-
constant solutions canonically leads to nonautonomous problems via the equation of perturbed
motion, and on the other side, in real-world applications one usually works with a step-size
control for the numerical scheme leading to variable time-steps.

Accordingly, we investigate the qualitative behavior of nonautonomous ODEs near not neces-
sarily hyperbolic equilibria under explicit one-step discretizations and with “qualitative behav-
ior” we mean the persistence of integral manifolds. More detailed, we consider the pseudo-stable
and -unstable integral manifolds corresponding to equilibria, as well as their intersections lead-
ing to center-like manifolds.

The study of invariant manifolds under numerical discretization goes back to Wolf-Jürgen
Beyn (cf. [Bey87]), who investigated the behavior near hyperbolic fixed points of autonomous
finite-dimensional ODEs. He shows that the corresponding stable and unstable manifolds of
the given continuous system and of its discretization are O(hp)-close in the C0-topology, where
p denotes the order of the method and h > 0 is the constant step-size. In a similar spirit,
[Feč91] treats only Euler-discretizations, but obtains C1-closeness in this situation. The case
of center-unstable manifolds under general one-step discretizations is considered in [BL87],
where the authors obtain even Ck-closeness; related results on center manifolds have been
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given by [Fum88] and another interesting approach to center manifolds under one-step schemes
can be found in [ZB98]. The most general situation is contained in [Gar93], where pseudo-
stable and -unstable invariant manifolds of ODEs in Banach spaces and their behavior under
discretization are considered. Finally, the initiating results of [Bey87] are generalized to semi-
linear parabolic equations in [AD91]. All the references given above, do not leave the mentioned
autonomous constant step-size framework, though. However, nonautonomous ODEs and their
stable manifolds are considered in [AG94], while we additionally consider the “full hierarchy”
of integral manifolds, their differentiability, as well as varying step-sizes. For that purpose, the
paper at hand is subdivided into several sections:

• Above all, we introduce our notation and try to convince the reader that the so-called
“calculus on time scales” (cf. [Hil90, BP01]) is a useful and convenient tool to tackle
problems in discretization theory, when it is important to formulate discrete and continu-
ous systems simultaneously. This leads to the concept of so-called “dynamic equations.”
Nevertheless, we point out that no previous knowledge of this calculus is needed to fully
understand the paper including its proofs.

• We work with nonautonomous ODEs in a weakly nonlinear form. Considering such
systems has the advantage that one obtains strong global results, which can be verified
in a technically elegant way. Using a cut-off technique, these results then easily carry
over “locally” to more realistic applications — at least for stable and unstable integral
manifolds; see Remark 4.1(2) for the more subtle case of center manifolds. In fact, we
study the behavior of weakly nonlinear equations under explicit one-step discretizations
and show in Proposition 3.4 that the discretized system is nothing else but a small
perturbation of the original system.

• Afterwards we state a general result on the existence and persistence of invariant fiber
bundles, which are the pendant of integral manifolds within the theory of dynamic
equations on time scales. Actually, the mentioned Proposition 4.2 applies to nonau-
tonomous, noninvertible dynamic equations on nearly arbitrary time scales, with a
pseudo-hyperbolic linear part where the growth rates are not assumed to be constant.
It will incorporate most of the technical work leading to our main Theorem 4.3 on the
O(Hp)-closeness of the integral manifolds of the original and the discretized system in
the Ck−1-topology; H > 0 denotes the maximal step-size and k ≥ 1 the smoothness
order of the invariant fiber bundles.

It is our intention to provide quantitative results and explicit estimates as far as possible, e.g.,
concerning the smallness of the step-sizes involved.

2. Preliminaries

First, Z is the set of integers, N is the set of positive integers, N0 := N ∪ {0}, R is the real
and C the complex field.

Within this paper, Banach spaces X or Y are all real (F = R) or complex (F = C) and their
norm is denoted by ‖·‖X , resp., ‖·‖Y or simply by ‖·‖. L(X ) is the Banach space of linear
continuous endomorphism on X and IX the identity map on X . The open ball in X with center
x ∈ X and radius ε > 0 is denoted by Bε(x) and B̄ε(x) stands for the closed ball.

We write Df for the Fréchet derivative of a mapping f and if f depends differentiable on
two or more variables, then the partial derivatives are denoted by D1f and D2f , and so on. In
addition, Cm(X ,Y), m ∈ N, is the linear space of m-times continuously differentiable mappings
between X and Y, and Cmb (X ,Y) is the subset of all such mappings with bounded derivatives
of order ≤ m. For some mapping F : X ×P → X , where P denotes a nonempty set, we define
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the Lipschitz constants

LipF (·, p) := inf {L ≥ 0 : ‖F (x, p)− F (x̄, p)‖ ≤ L ‖x− x̄‖ for all x, x̄ ∈ X} ,
Lip1 F := sup

p∈P
LipF (·, p),

provided they exist. If the set P has a metric structure, one defines Lip2 F analogously, and
proceeds correspondingly, if F depends on more than two variables.

For a convenient notation of discrete and continuous results simultaneously, we use the
calculus on time scales (cf. [Hil90, BP01]). In general, a time scale T is a canonically ordered
closed subset of the reals, and the mapping σ : T → T, σ(t) := inf {s ∈ T : t < s} is the jump
operator, while µ : T → R, µ(t) := σ(t) − t is denoted as graininess. For τ ∈ T we abbreviate
T+
τ := {s ∈ T : τ ≤ s} and T−τ := {s ∈ T : s ≤ τ}. However, to broaden the audience of this

paper, we restrict our considerations to the cases T = R and to so-called discrete time scales,
which are of the form T = {tk}k∈I with a real sequence (tk)k∈I, where I = N0 or I = Z and
we always assume tk < tk+1 for k ∈ I. Hence, discrete time scales are unbounded above,
i.e., we have limk→∞ tk = ∞ and in case I = Z also unbounded below, because otherwise T
would not be closed. The examples tk = hk, k ∈ I, for some h > 0 or the harmonic numbers
tk =

∑k
n=0

1
n+1 , k ∈ N0, fit into our setting. For the time scales under consideration, we have

σ(t) = t, µ(t) ≡ 0 (T = R) and σ(tk) = tk+1, µ(tk) = tk+1−tk (T = {tk}k∈I). So it is reasonable
to interpret µ as step-size in numerical schemes.
C(T,X ) denotes the linear space of continuous functions from T to X . Growth rates are

functions a ∈ C(T,R) such that −1 < inft∈T µ(t)a(t) and supt∈T µ(t)a(t) <∞ holds. Moreover,
for a, b ∈ C(T,R) we introduce the relations bb− ac := inft∈T(b(t)− a(t)),

a C b :⇔ 0 < bb− ac , a E b :⇔ 0 ≤ bb− ac .

On the set R := {a ∈ C(T,R) : a is a growth rate and 1 + µ(t)a(t) > 0 for t ∈ T} we define the
product (m� a)(t) := limh↘µ(t)

(1+ha(t))m−1
h with m ∈ N.

Now for an appropriate mapping φ : T→ X , its derivative (cf. [Hil90, Section 2.4]) is denoted
by φ∆ : T→ X , and for T = R given by the usual differential quotient φ∆(t) = lims→t

φ(s)−φ(t)
s−t

in case it exists, whereas for discrete time scales T = {tk}k∈I we obtain the forward difference
quotient φ∆(tk) = φ(tk+1)−φ(tk)

tk−1−tk for k ∈ I.
For a nonautonomous, parameter-dependent dynamic equation

(2.1) x∆ = f(t, x; p)

with a right-hand side f : T×X ×P → X , we say a mapping ν : I → X is a solution of (2.1), if
ν∆(t) ∈ X exists and the identity ν∆(t) = f(t, ν(t); p) holds on a subset I ⊆ T. For right-hand
sides f guaranteeing existence and uniqueness of solutions in forward time (cf., e.g., [Pöt02,
p. 38, Satz 1.2.17(a)]), let ϕ(2.1)(t; τ, ξ; p) denote the general solution of (2.1), i.e. ϕ(2.1)(·; τ, ξ; p)
solves (2.1) on T+

τ and satisfies ϕ(2.1)(τ ; τ, ξ; p) = ξ for τ ∈ T, ξ ∈ X , p ∈ P. It fulfills the
cocycle property

(2.2) ϕ(2.1)(t; s, ϕ(2.1)(s; τ, ξ; p); p) = ϕ(2.1)(t; τ, ξ; p) for τ, s, t ∈ T+
τ , τ ≤ s ≤ t

and ξ ∈ X , p ∈ P. As mentioned in the introduction, invariant fiber bundles are generalizations
of invariant manifolds to nonautonomous equations. In order to be more precise, for fixed
parameters p ∈ P, we call a subset S(p) of the extended state space T × X an invariant fiber
bundle of (2.1), if for any pair (τ, ξ) ∈ S(p) one has (t, ϕ(2.1)(t; τ, ξ; p)) ∈ S(p) for all t ∈ T+

τ ,
and if S(p) is graph of a mapping over a subset of T×X . In case T = R we speak of an integral
manifold instead of an invariant fiber bundle.
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Given a coefficient mapping A ∈ C(T,L(X )), the transition operator Ψ(2.3)(t, τ) ∈ L(X ),
τ ≤ t, of a linear dynamic equation

(2.3) x∆ = A(t)x

is the solution of the operator-valued initial value problem X∆ = A(t)X, X(τ) = IX in L(X ).
Besides, for a ∈ R the exponential function on T is denoted by ea(t, s) ∈ R, s, t ∈ T, and we
have ea(t, s) = exp

(∫ t
s
a(τ)dτ

)
for T = R, while the representation

ea(tk, tl) =

{ ∏max{k,l}−1
n=min{k,l}(1 + µ(tn)a(tn)) if k 6= l

1 if k = l

holds on discrete time scales for k, l ∈ I.
A projection-valued mapping P : T → L(X ) is called a projector, we speak of an invariant

projector of (2.3), if P (t)Ψ(2.3)(t, s) = Ψ(2.3)(t, s)P (s) for s ≤ t holds, and finally, an invariant
projector P is denoted as regular, if

IX + µ(t)A(t)|R(P (t)) : R(P (t))→ R
(
P (σ(t))

)
is bijective for all t ∈ T.

Then the restriction Ψ̄(2.3)(t, s) := Ψ(2.3)(t, s)|R(P (s)) : R(P (s)) → R(P (t)), s ≤ t, is a well-
defined isomorphism, and we denote its inverse by Ψ̄(2.3)(s, t) (cf. [Pöt02, p. 86]). With an
integer N ≥ 2, the system (2.3) is said to possess an exponential N -splitting, if there exist
invariant projectors P1, . . . , PN : T→ L(X ) with

P1(t) + . . .+ PN (t) ≡ IX , Pi(t)Pj(t) ≡ 0 for i 6= j, t ∈ T(2.4)

such that P2, . . . , PN are regular and for 1 ≤ j < N we have the estimates∥∥Ψ(2.3)(t, s)Pj(s)
∥∥ ≤ K+

j eaj (t, s),
∥∥Ψ̄(2.3)(s, t)Pj+1(t)

∥∥ ≤ K−j ebj (s, t) for s ≤ t(2.5)

with reals K±1 , . . . ,K
±
N−1 ≥ 1 and growth rates aj , bj ∈ R, where aj C bj for 1 ≤ j < N and

bj E aj+1 for 1 ≤ j < N − 1. In case N = 2 we speak of an exponential dichotomy and for
N = 3 of an exponential trichotomy. In this situation, for illustrative reasons, we could call
P1, P2 and P3 the stable, center and unstable projector, since in many applications b1 E 0 E a2.
This, however, is nowhere assumed here. Explicit examples for the occurrence of exponential
N -splittings will be given later on.

To close this section, we introduce the so-called quasiboundedness, which is a convenient
notion describing exponential growth of functions.

2.1. Definition. For c ∈ R, τ ∈ T we say that φ ∈ C(T,X ) is

(a) c+-quasibounded, if ‖φ‖+τ,c := supt∈T+
τ
‖φ(t)‖ ec(τ, t) <∞,

(b) c−-quasibounded, if ‖φ‖−τ,c := supt∈T−τ ‖φ(t)‖ ec(τ, t) <∞.

By X+
τ,c(T) and X−τ,c(T) we denote the sets of c+- and c−-quasibounded functions defined (at

least) on T+
τ and T−τ , respectively.

Obviously X+
τ,c(T) and X−τ,c(T) are nonempty and it is immediate that for any c ∈ R, τ ∈ T,

the sets X+
τ,c(T) and X−τ,c(T) are Banach spaces with the norms ‖·‖+τ,c and ‖·‖−τ,c, respectively.

Finally, the spaces X+
τ,c(T) define a scale of Banach spaces, i.e., for c, d ∈ R we have the

implication c E d ⇒ X+
τ,c(T) ⊆ X+

τ,d(T).
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3. Discretization of weakly nonlinear equations

In the first part of this section we are interested in linear ordinary differential and dynamic
equations only. Precisely we assume

Hypothesis (linear part). For given p ∈ N and N ≥ 2 consider the linear ODE

(3.1) ẋ = A(t)x

under the following assumption:
(H)1 A ∈ Cpb (R,L(X )), set |A|n := supt∈R ‖DnA(t)‖ for 0 ≤ n ≤ p, and (3.1) is supposed to

possess an exponential N -splitting, i.e., we have the estimates∥∥Ψ(3.1)(t, s)Pj(s)
∥∥ ≤ K+

j e
αj(t−s),

∥∥Ψ(3.1)(s, t)Pj+1(t)
∥∥ ≤ K−j eβj(s−t) for s ≤ t

with reals K±j ≥ 1, αj , βj ∈ R, where αj < βj for 1 ≤ j < N , and βj ≤ αj+1 for
1 ≤ j < N − 1 and invariant projectors Pi satisfying (2.4).

In the autonomous situation A(t) ≡ A0 on R, the linear ODE (3.1) possesses an exponential
N -splitting, if the spectral points λ of the operator A0 ∈ L(X ) satisfy <λ ∈

⋃N−1
i=1 (βi−1, αi),

where β0 = −∞. As another example, if (3.1) is a variational equation corresponding with an
n-parameter family, n ∈ N0, of periodic solutions, then under certain nondegeneracy conditions,
the equation (3.1) has an exponential trichotomy with dimR(P2(τ)) = n for τ ∈ R (cf. [Aul81]).

We start with an elementary preparatory result:

3.1. Lemma. Assume that α < β are reals and define εh(α, β) := eβh−eαh
h . Then there exists

a H > 0 such that
β − α

2
< lim
t↘h

εt(α, β) <
3(β − α)

2
for h ∈ [0, H] .

Proof. The assertion immediately follows from limt↘0
eβt−eαt

t = β − α. �

For our further considerations it is convenient to introduce the abbreviation

E1
α(h) :=

{
eαh−1
αh if αh 6= 0
1 if αh = 0

, E2
α(h) :=

{
eαh−αh−1

(αh)2 if αh 6= 0
1
2 if αh = 0

with real numbers α, h. It is easy to see that Eiα(h) ∈ R, i = 1, 2, are continuous in (α, h) and
increasing (decreasing) in h, provided that α ≥ 0 (α ≤ 0).

3.2. Lemma. Assume that Hypothesis (H)1 is satisfied. Then

(3.2)
∥∥A(t)Ψ(3.1)(t, s)−A(s)

∥∥ ≤ (|A|20E1
|A|0

(t− s) + |A|1
)

(t− s) for s ≤ t.

Proof. Using the mean value theorem (cf. [Lan93, p. 341, Theorem 4.2]) and Ψ(3.1)(τ, τ) = IX ,
we obtain the identity

Ψ(3.1)(t, s) = IX +
∫ 1

0

D1Ψ(3.1)(s+ τ(t− s), s)dτ(t− s)

(3.1)
= IX +

∫ 1

0

A(s+ τ(t− s))Ψ(3.1)(s+ τ(t− s), s)dτ(t− s) for s ≤ t,(3.3)

and the mean value inequality (cf. [Lan93, p. 342, Corollary 4.3]), as well as an estimate derived
in [AW96, Lemma 2.9], yields∥∥A(t)Ψ(3.1)(t, s)−A(s)

∥∥ ≤ ∥∥A(t)Ψ(3.1)(t, s)−A(t)
∥∥+ ‖A(t)−A(s)‖
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≤ |A|0
∥∥Ψ(3.1)(t, s)− IX

∥∥+ |A|1 (t− s)

(3.3)
= |A|0

∥∥∥∥∫ 1

0

A(s+ τ(t− s))Ψ(3.1)(s+ τ(t− s), s)dτ
∥∥∥∥ (t− s) + |A|1 (t− s)

≤ |A|20
∫ 1

0

∥∥Ψ(3.1)(s+ τ(t− s), s)
∥∥ dτ(t− s) + |A|1 (t− s)

(3.1)

≤ |A|20
∫ 1

0

e|A|0(t−s)τdτ(t− s) + |A|1 (t− s) for s ≤ t.

An elementary integration finally gives us (3.2). �

Remark 3.1. It is possible to improve the above estimate (3.2) by using the logarithmic norm
χ0(B) := lims↘0

‖IX+sB‖−1
s of an operator B ∈ L(X ) (cf. [DV84, pp. 27–34, Section 1.5]),

which can be used to estimate
∥∥Ψ(3.1)(t, s)

∥∥. Note that one has χ0(A(t)) ≤ |A|0 for all t ∈ R.

It is reasonable, to restrict our considerations to numerical schemes where the step-size is
bounded above.

Hypothesis (time scale). Let H > 0 be real and T = {tk}k∈I be a discrete time scale under
the following assumption:

(H)2 0 < µ(tk) ≤ H for all k ∈ I.

Differing from many other investigations in analytical discretization theory (see e.g. the
monograph [SH98] or [Bey87, BL87, Fum88, Feč91, AD91, Gar93]), we do consider nonau-
tonomous equations and varying step-sizes. Therefore, discretization theory of linear systems
is not only part of a general perturbation theory of linear operators, and we have to employ
different techniques.

3.3. Lemma. Assume that Hypotheses (H)1–(H)2 are satisfied, ᾱj , β̄j ∈ (αj , βj) with ᾱj < β̄j
for 1 ≤ j < N , and H > 0 is chosen so small that

(3.4)
N−1
max
j=1

(
K1(j)
ᾱj − αj

+
K2(j)
βj − β̄j

)(
|A|20E

2
|A|0

(H) + 1
2 |A|1

)
H <

1
2

with K1(j) :=
∑j
k=1K

+
k and K2(j) :=

∑N−1
k=j K

−
k . Then also the linear dynamic equation (2.3)

on the discrete time scale T possesses an exponential N -splitting with āj , b̄j, K̄±j for 1 ≤ j < N

and invariant projectors Qj : T→ L(X ), where āj(t) := eᾱjµ(t)−1
µ(t) , b̄j(t) := eβ̄jµ(t)−1

µ(t) for t ∈ T,

K̄+
j :=

K1(j)

1− 2 maxN−1
i=1

(
K1(i)
ᾱj−αj + K2(i)

βj−β̄j

) , K̄−j :=
K2(j)

1− 2 maxN−1
i=1

(
K1(i)
ᾱj−αj + K2(i)

βj−β̄j

)
and Qj satisfies ‖Qj(t)− Pj(t)‖L(X ) = O(H) for 1 ≤ j < N , uniformly in t ∈ T.

Proof. Obviously Ψ(3.1)|T×T is the transition operator of the dynamic equation

x∆ = Â(t)x, Â(tk) := 1
µ(tk)

(
Ψ(3.1)(tk+1, tk)− IX

)
for k ∈ I(3.5)

on the discrete time scale T and, thus, it is easy to see that (3.5) possesses an exponential
N -splitting with âj(t) := eαjµ(t)−1

µ(t) , b̂j(t) := eβjµ(t)−1
µ(t) , 1 ≤ j < N , for t ∈ T and invariant

projectors Pj |T, 1 ≤ j ≤ N . Using (3.3) one obtains∥∥∥A(tk)− Â(tk)
∥∥∥ ≤ ∥∥∥∥∫ 1

0

A(tk)−A(tk+1 + τµ(tk))Ψ(3.1)(tk + τµ(tk), tk)dτ
∥∥∥∥
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(3.2)

≤
∫ 1

0

(
|A|20E

1
|A|0

(τµ(tk)) + |A|1
)
τdτµ(tk) for k ∈ I.

and distinguishing the cases A = 0 and A 6= 0 we get by an easy integration∥∥∥A(tk)− Â(tk)
∥∥∥ ≤ (|A|20E2

|A|0
(H) + 1

2 |A|1
)
H for k ∈ I.

Consequently, under the assumption (3.4), a roughness argument for exponential N -splittings
yields the assertion, which is essentially a consequence of (cf. [Pöt05]. �

From now on, and similarly to [AG94], we work with semi-linear systems, where the non-
linear perturbations are globally small Lipschitzian. Furthermore, they are assumed to have
polynomially decaying derivatives in the state space, here.

Hypothesis (nonlinear part). For given p ∈ N, q ∈ N0 consider the ODE

(3.6) ẋ = A(t)x+ F (t, x)

under the following assumptions:
(H)3 F : R×X → X such that the derivatives DnF exist and are continuous for 0 ≤ n ≤ p+1,

F (t, 0) ≡ 0 on R, and we impose the growth conditions

sup
(t,x)∈R×X

‖DnF (t, x)‖ <∞ for 1 ≤ n ≤ p+ 1,

sup
(t,x)∈R×X

∥∥Dn
2D

k
1F (t, x)

∥∥ ‖x‖n−1
<∞ for k ≥ 0, n ≥ 2, k + n ≤ p+ 1.

(H)′3 Dn
2F exist and are continuous for p+ 1 ≤ n ≤ p+ q + 2.

Remark 3.2. (1) By standard theorems on ODEs (cf., e.g., [Lan93, p. 377, Theorem 5.2]), the
assertions (H)1, (H)3 imply that the general solution ϕ(3.6) has R × R × X as its domain of
definition, is of class Cp, and the partial derivative D1ϕ(3.6) is of class Cp, i.e., Dp+1

1 ϕ(3.6) exists
and is continuous.

(2) Using a cut-off technique one can weaken (H)3 to:
(∗) F is of class Cp+1 on a set of the form R×BR(0), R > 0, F (t, 0) ≡ 0 on R and suppose

that there exists a ρ0 ∈
(
0, R2

)
such that DnF (R×B2ρ0(0)) is bounded for 1 ≤ n ≤ p+1.

Nevertheless, an important assumption here is that X is a Cp+1-Banach space, i.e., the norm
‖·‖X : X → R is of class Cp+1 away from 0. Finite dimensional or Hilbert spaces are C∞-
Banach spaces, while the general situation is considered in [KM97, pp. 127–152]. Then there
exists a Cp+1-bump function Θρ0 : X → [0, 1] with Θρ0(x) ≡ 1 on B̄ρ0(0) and Θρ0(x) ≡ 0
outside of B̄2ρ0(0). We define the mapping Fρ : R × X → X , Fρ(t, x) := Θρ(x)F (t, x) and
in the light of (∗), the modified mapping Fρ satisfies (H)3 for ρ ∈ (0, ρ0]. Additionally, (3.6)
coincides with

(3.7) ẋ = A(t)x+ Fρ(t, x)

on R × B̄ρ(0). Finally, under the assumption limx→0D2F (t, x) = 0 uniformly in t ∈ T, one
obtains the limit relation limρ↘0 Lip2 Fρ = 0, which is essential to apply Proposition 4.2 or
Theorem 4.3 to the dynamic equation (3.7). A similar construction in a Cp+q+2-Banach space
can be used to fulfill Hypothesis (H)′3.

Now we investigate a dynamic equation on a discrete time scale T, which has the restriction
ϕ(3.6)(·; τ, ξ)|T, τ ∈ T, ξ ∈ X , as its general solution. This will be called the T-equation of (3.6)
and is our substitute for the time-h-map in a nonautonomous setting.



8 STEFAN KELLER AND CHRISTIAN PÖTZSCHE

Thereto, with given k, n ∈ N we write #N for the cardinality of a finite set N ⊂ N and

P<k (n) :=

(N1, . . . , Nk)

∣∣∣∣∣∣∣∣
Ni ⊆ {1, . . . , n} and Ni 6= ∅ for i ∈ {1, . . . , k} ,
N1 ∪ . . . ∪Nk = {1, . . . , n} ,
Ni ∩Nj = ∅ for i 6= j, i, j ∈ {1, . . . , k} ,
maxNi < maxNi+1 for i ∈ {1, . . . , k − 1}


for the set of ordered partitions of {1, . . . , n} with length k.

3.4. Proposition (T-equation). Assume that Hypotheses (H)1–(H)3 are satisfied and τ ∈ T,
ξ ∈ X . Then ϕ(3.6)(·; τ, ξ)|T solves the dynamic equation

(3.8) x∆ = A(t)x+ F (t, x) + φ(t, x, µ(t))

on T with mappings

φ(t, x, h) :=
p−1∑
n=1

hnφn(t, x) + hpφp(t, x, h),

φn(t, x) :=
1

(n+ 1)!

n∑
k=1

∑
(N1,...,Nk)∈P<k (n)

Dkf(t, x)f̂#N1(t; t, x) · . . . · f̂#Nk(t; t, x),

φp(t, x, h) :=
∫ 1

0

(1− s)p

p!

p∑
k=1

∑
(N1,...,Nk)∈P<k (p)

Dkf(t, ϕ(3.6)(t+ sh; t, x))·

· f̂#N1(t+ sh; t, x) · . . . · f̂#Nk(t+ sh; t, x)ds,

for 1 ≤ n < p with f(t, x) := A(t)x+ F (t, x), and

f̂1(s; t, x) :=
(

1
f(s, ϕ(3.6)(s; t, x))

)
, f̂k(s; t, x) :=

(
0

Dk
1ϕ(3.6)(s; t, x)

)
for 2 ≤ k ≤ p.

Moreover, we have:
(a) φn(t, 0) ≡ 0, φp(t, 0, h) ≡ 0 on T for 1 ≤ n < p and h ∈ [0, H].
(b) The mappings φ1, . . . , φp are continuous and globally Lipschitzian in x ∈ X (uniformly

in t ∈ T, h ∈ [0, H]). Under Hypothesis (H)′3, φ1, . . . , φp are (q+ 1)-times continuously
differentiable in the second argument with globally bounded derivatives Dk

2φn, 1 ≤ k ≤
q + 1, for 1 ≤ n ≤ p.

(c) The mapping φ : T × X × [0, H] → X is globally Lipschitzian in x ∈ X (uniformly in
t ∈ T, h ∈ [0, H]) with

(3.9) Lip2 φ ≤
p∑

n=1

hn Lip2 φn.

Under Hypothesis (H)′3, φ is (q + 1)-times continuously differentiable in the second
argument with globally bounded derivatives Dk

2φ, 1 ≤ k ≤ q + 1.

Proof. Let h ∈ (0, H], τ, t ∈ T and x ∈ X be arbitrary. Keeping in mind Remark 3.2(1), the
partial derivativesDn

1ϕ(3.6) exist and are continuous up to order n = p+1. Hence, differentiating
the identity D1ϕ(3.6)(t; τ, ξ) = f(t, ϕ(3.6)(t; τ, ξ)) with the higher order chain rule (cf. [But87,
p. 156, Lemma 302A]) leads to

Dn+1
1 ϕ(3.6)(t; τ, x) =

n∑
k=1

∑
(N1,...,Nk)∈P<k (n)

Dkf(t, ϕ(3.6)(t; τ, x))f̂#N1(t; τ, x) · . . . · f̂#Nk(t; τ, x)
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for 1 ≤ n ≤ p, with the above abbreviations for f̂1, . . . , f̂p. In particular, we have φn(t, x) =
1

(n+1)!D
n+1
1 ϕ(3.6)(t; t, x), 1 ≤ n < p, since ϕ(3.6)(t; t, x) = x. Using Taylor’s formula (cf. [Lan93,

p. 349]) we obtain the relation

(3.10)
ϕ(3.6)(t+ h; t, x)− x

h

=
p−1∑
n=0

hn

(n+ 1)!
Dn+1

1 ϕ(3.6)(t; t, x) + hp
∫ 1

0

(1− s)p

p!
Dp+1

1 ϕ(3.6)(t+ sh; t, x) ds

= A(t)x+ F (t, x) +
p−1∑
n=1

hnφn(t, x) + hpφp(t, x, h) ds = A(t)x+ F (t, x) + φ(t, x, h),

and ϕ(3.6)(·; τ, x)∆(t) = ϕ(3.6)(σ(t);τ,x)−ϕ(3.6)(t;τ,x)

µ(t) for τ, t ∈ T, as well as (2.2), yields that
ϕ(3.6)(·; τ, ξ) is a solution of (3.8).

(a) We show the identity φn(t, 0) ≡ 0 for 1 ≤ n ≤ k by induction over k ∈ {1, . . . , p− 1}.
From Hypothesis (H)3 we have ϕ(3.6)(t; τ, 0) = 0 and consequently (3.10) implies φ(t, 0, h) ≡ 0
for t ∈ T, h ∈ (0, H]. Therefore, one has the identity 0 = φ(t, 0, h) = hφ1(t, 0) +∑p−1
n=2 h

nφn(t, 0) +hpφp(t, 0, h) and thus ‖φ1(t, 0)‖ ≤
∑p−1
n=2 h

n−1 ‖φn(t, 0)‖+hp−1 ‖φp(t, 0, h)‖,
which in the limit h ↘ 0 yields φ1(t, 0) = 0, since limh↘0 φp(t, 0, h) exists by defini-
tion of φp. Now assume φn(t, 0) = 0 for 1 ≤ n ≤ k and k ≤ p − 2. Then similarly
0 = φ(t, 0, h) = hk+1φk+1(t, 0) +

∑p−1
n=k+2 h

nφn(t, 0) + hpφp(t, 0, h), and so ‖φk+1(t, 0)‖ ≤∑p−1
n=k+2 h

n−k−1 ‖φn(t, 0)‖+hp−k−1 ‖φp(t, 0, h)‖. Reasoning as above, passing over to the limit
h↘ 0 gives us necessarily φn(t, 0) ≡ 0, t ∈ T. Hence, we have shown φn(t, 0) ≡ 0 for 1 ≤ n < p

and this, in turn, implies φp(t, 0, h) = φ(t, 0, h)−
∑p−1
n=0 h

nφn(t, 0) = 0.
(b) The proof of assertion (b) is quite technical and we refer to [Kel99, p. 92, Satz 4.1.9] for

the details.
(c) The estimate (3.9) is a consequence of (b) and properties of globally Lipschitzian mappings

from, e.g., [AMR88, p. 138, Exercise 2.5K(i)]. �

An explicit one-step method to solve (3.6) is a recursion of the form

xk+1 := xk + µ(tk)Φ(tk, xk, µ(tk)),

where T = {tk}k∈I is a discrete time scale and the mapping Φ satisfies some, e.g., consistency
assumptions (cf., for instance, [SB83]). One can easily embed such one-step methods into the
calculus on time scales. Actually, for a given initial value x0 = ξ, the sequence (xk)k∈N0 is just
the solution of the dynamic equation

(3.11) x∆ = Φ(t, x, µ(t))

on the time scale T = {tk}k∈I, i.e., one has ϕ(3.11)(tk; t0, ξ) = xk for all k ∈ N0.
From now on, we denote (3.11) as explicit one-step discretization of (3.6) and assume

Hypothesis (discretization). Let p ∈ N, q ∈ N0, T be a discrete time scale like in (H)2.
Consider a mapping Φ : T×X × [0, H]→ X under the following assumptions:

(H)4 Φ(t, 0, h) ≡ 0 for t ∈ T, h ∈ [0, H], Φ generates an explicit one-step method of order p,
i.e., for each t ∈ T, x ∈ X there exists a K(t, x) ≥ 0 depending only on A and F , but
not on h ∈ [0, H], with

(3.12) ‖A(t)x+ F (t, x) + φ(t, x, h)− Φ(t, x, h)‖ ≤ K(t, x)hp for h ∈ [0, H] ,
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where φ is given in Proposition 3.4, and the partial derivatives Dn
3 Φ(t, x, ·), 0 ≤ n ≤ p,

t ∈ T, x ∈ X , exist and are continuous, and Lip2D
p
3Φ <∞.

(H)′4 Dp
3Φ is (q + 1)-times continuously differentiable in the second variable with globally

bounded partial derivatives Dn
2D

p
3Φ for 1 ≤ n ≤ q + 1.

Remark 3.3. (1) Instead of (3.12), it is more common in numerical analysis to work with the
local discretization error

eh(t, x) := ϕ(3.6)(t+ h; t, x)− x− hΦ(t, x, h)

for h ∈ [0, H], t ∈ T and x ∈ X , but obviously the inequality (3.12) is equivalent to ‖eh(t, x)‖ ≤
K(t, x)hp+1 (cf. (3.10)).

(2) If Φ is given by an explicit r-stage Runge-Kutta method of order p ∈ N to solve (3.6)
under the assumptions of (H)3, then (H)4 is fulfilled. Similarly, (H)′3 implies (H)′4 (cf. [Kel99,
pp. 95–102, Abschnitt 4.2]).

3.5. Proposition. Under Hypothesis (H)4 the mapping Φ has the representation

(3.13) Φ(t, x, h) = A(t)x+ F (t, x) +
p−1∑
n=1

hnΦn(t, x) + hpΦp(t, x, h)

for t ∈ T, x ∈ X and h ∈ [0, H], with mappings

Φn(t, x) := 1
n!D

n
3 Φ(t, x, 0) for 0 ≤ n < p,

Φp(t, x, h) :=
1

(p− 1)!

∫ 1

0

(1− s)p−1Dp
3Φ(t, x, sh) ds.

Moreover, under the Hypotheses (H)1–(H)2 we have:
(a) Φn = φn for 1 ≤ n < p, Φp(t, 0, h) ≡ 0 for all t ∈ T and h ∈ [0, H].
(b) The mappings Φ1, . . . ,Φp are continuous and globally Lipschitzian in x ∈ X (uniformly

in t ∈ T, h ∈ [0, H]), and in particular we have

(3.14) Lip2 Φp ≤ 1
p! Lip2D

p
3Φ.

Under Hypothesis (H)′3, Φ1, . . . ,Φp are (q + 1)-times continuously differentiable in the
second argument with globally bounded derivatives Dk

2Φn, 1 ≤ k ≤ q+ 1, for 1 ≤ n ≤ p.

Proof. Let h ∈ (0, H], t ∈ T, x ∈ X be arbitrary. The representation (3.13) is just a Taylor
expansion of Φ(t, x, h) of order p w.r.t. h around 0 (cf. [Lan93, p. 349]).

(a) Using Proposition 3.4 and (3.13), as well as the abbreviation f(t, x) = A(t)x + F (t, x),
we obtain the representations

φ(t, x, h) = f(t, x) +
k∑

n=1

hnφn(t, x) +
p−1∑

n=k+1

hnφ(t, x) + hpφp(t, x, h),

Φ(t, x, h) =
k∑

n=0

hnΦn(t, x) +
p−1∑

n=k+1

hnΦ(t, x) + hpΦp(t, x, h)

for any 1 ≤ k < p, and proceed inductively now. For k = 0 we get from the triangle inequality

K(t, x)hp
(3.12)

≥ ‖f(t, x) + φ(t, x, h)− Φ(t, x, h)‖ =

∥∥∥∥∥f(t, x)− Φ0(t, x)

+ h

[
p−1∑
n=1

hn−1 (φn(t, x)− Φn(t, x)) + hp−1 (φp(t, x, h)− Φp(t, x, h))

]∥∥∥∥∥
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≥ ‖f(t, x)− Φ0(t, x)‖

− h

∥∥∥∥∥
p−1∑
n=1

hn−1 (φn(t, x)− Φn(t, x)) + hp−1 (φp(t, x, h)− Φp(t, x, h))

∥∥∥∥∥
and in the limit h ↘ 0, therefore, Φ0(t, x) = f(t, x) for all t ∈ T, x ∈ X . Now assume that
Φn(t, x) = φn(t, x) for 1 ≤ n ≤ k and k ≤ p− 1. Then similarly, by the induction hypothesis

K(t, x)hp−k−1
(3.12)

≥

∥∥∥∥∥φk+1(t, x)− Φk+1(t, x)

+ h

[
p−1∑

n=k+2

hn−k−2 (φn(t, x)− Φn(t, x)) + hp−k−2 (φp(t, x, h)− Φp(t, x, h))

]∥∥∥∥∥
≥ ‖φk+1(t, x)− Φk+1(t, x)‖

− h

∥∥∥∥∥
p−1∑

n=k+2

hn−k−2 (φn(t, x)− Φn(t, x)) + hp−k−2 (φp(t, x, h)− Φp(t, x, h))

∥∥∥∥∥ ,
which yields φk+1(t, x) = Φk+1(t, x) for h↘ 0. This, in turn, together with (H)4 and Proposi-
tion 3.4(a) gives us

Φp(t, 0, h)
(3.13)

=
1
hp

(
Φ(t, 0, h)−

p−1∑
n=0

hnφn(t, 0)

)
= 0.

(b) The continuity and the Lipschitz property of Φ0, . . . ,Φp−1 is an easy consequence of
assertion (a) and Proposition 3.4(b). On the other hand, the mapping Φp satisfies the Lipschitz
condition

‖Φp(t, x, h)− Φp(t, x̄, h)‖ ≤ 1
(p− 1)!

∫ 1

0

(1− s)p−1 ‖Dp
3Φ(t, x, sh)−Dp

3Φ(t, x̄, sh)‖ ds

≤ 1
(p− 1)!

∫ 1

0

(1− s)p−1 Lip2D
p
3Φ ds ‖x− x̄‖ =

Lip2D
p
3Φ

p!
‖x− x̄‖

for t ∈ T, x, x̄ ∈ X , h ∈ [0, H0] and due to the discrete topology of T and [AW96, Lemma B.4]
we obtain the continuity of Φp : T×X × [0, H]→ X . Now assume, (H)′3 holds. Then assertion
(a) and Proposition 3.4(b) yield that Φ1, . . . ,Φp−1 are (q+ 1)-times continuously differentiable
in the second variable with globally bounded partial derivatives. Moreover, (H)′4 implies the
assertions for Φp. �

4. Asymptotics of Invariant Fiber Bundles

In the first part of the present section, T can be an arbitrary time scale which is unbounded
above and has bounded graininess, like, e.g., R or a discrete time scale. We begin with a useful
tool about invariant fiber bundles for dynamic equations of the form

(4.1) x∆ = A(t)x+ F1(t, x) + θF2(t, x),

with continuous mappings F1, F2 : T × X → X . It incorporates all the technical machinery
to prove our main result, and generalizes several earlier approaches for F2 = 0, which can
be traced back to [Aul87], who considers finite-dimensional autonomous ODEs, while [Aul95]
works with nonautonomous difference equations in general Banach spaces, and the case of
infinite-dimensional Carathéodory differential equations can be found in [AW96].

We precisely assume the following
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4.1. Hypothesis. Let θ ∈ F and N ≥ 2. We consider semi-linear perturbations (4.1) of the
dynamic equation (2.3) and assume:

(i) The linear dynamic equation (2.3) has an exponential N -splitting, i.e., the estimates
(2.5) hold.

(ii) For i = 1, 2 one has the identities Fi(t, 0) ≡ 0 on T and there exist Li ∈ [0,∞) such
that the mappings Fi satisfy the following global Lipschitz estimates

Lip2 Fi ≤ Li.

Moreover, we define K1(j) :=
∑j
k=1K

+
k , K2(j) :=

∑N−1
k=j K

−
k for 1 ≤ j < N , for some

real δmax > 0 we require

L1 <
δmax

2Kmax
, Kmax :=

N−1
max
i=1

(K1(i) +K2(i) +K1(i)K2(i)) ,

choose a fixed δ ∈ (2KmaxL0, δmax) and abbreviate Θ := {θ ∈ F : L2 |θ| ≤ L1},

Γj := {c ∈ R : aj + δ C c C bj − δ} for 1 ≤ j < N.

(iii) Assume the partial derivatives Dn
2Fi(t, ·), t ∈ T, exist, are continuous on X up to order

m ∈ N, and suppose they are globally bounded, i.e. for 2 ≤ n ≤ m we have

sup
(t,x)∈T×X

‖Dn
2Fi(t, x)‖ <∞ for i = 1, 2.

For the sake of a convenient notation and with invariant projectors Pi like in (2.4), we define
P ji := Pi + . . . + Pj , 1 ≤ i ≤ j ≤ N . Using (2.4), we see that P ji is an invariant projector of
(2.3); moreover, P ji is regular for i ≥ 2 and we define the complementary subspaces

X ji (τ) := R(P ji (τ)) =
j⊕
k=i

R(Pk(τ)), X̄ ji (τ) := N (P ji (τ)) =
j⋂
k=i

N (Pk(τ))

for any τ ∈ T. Before proceeding, for growth rates a, b ∈ R(T,R) and m,n ∈ N satisfying
m� a C b, a C n� b, we get from [PS04, Lemma 4.1] that

ρms [a, b] := inf
t∈T

lim
h↘µ(t)

1 + ha(t)
h

(
m

√
1 + ha(t) + 1 + hb(t)

1 + ha(t) + (1 + ha(t))m
− 1

)
> 0,

ρnr [a, b] := inf
t∈T

lim
h↘µ(t)

1 + hb(t)
h

(
1− n

√
1 + ha(t) + 1 + hb(t)

1 + hb(t) + (1 + hb(t))m

)
> 0.

4.2. Proposition (hierarchies of invariant fiber bundles). Assume that Hypothesis 4.1(i)–(ii)

holds with δmax = minN−1
i=1 bbi−aic

2 , let 1 ≤ j ≤ i ≤ N , (j, i) 6= (1, N), where in case j > 1 we
additionally suppose that T is also unbounded below. Then for all θ ∈ Θ the sets

Ci,j(θ) :=


{

(τ, x0) ∈ T×X : ϕ(4.1)(·; τ, x0; θ) ∈ X+
τ,c(T) for all c ∈ Γi

}
for j = 1{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.1)
with ν(τ) = x0 and ν ∈ X−τ,c(T) for all c ∈ Γj−1

}
for i = N

Ci,1(θ) ∩ CN,j(θ) else
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are invariant fiber bundles of (4.1) admitting the so-called extended hierarchy

(4.2)

C1,1(θ) ⊂ C2,1(θ) ⊂ . . . ⊂ CN−1,1(θ) ⊂ T×X
∪ ∪ ∪

C2,2(θ) ⊂ . . . ⊂ CN−1,2(θ) ⊂ CN,2(θ)
∪ ∪

. . .
...

...
∪ ∪

CN−1,N−1(θ) ⊂ CN,N−1(θ)
∪

CN,N (θ).

Each Ci,j(θ) possesses the representation as graph

Ci,j(θ) =
{

(τ, η + ci,j(τ, η; θ)) ∈ T×X : τ ∈ T, η ∈ X ij (τ)
}

with a uniquely determined continuous mapping ci,j : T×X ×Θ→ X satisfying

ci,j(τ, x0; θ) = ci,j(τ, P ij (τ)x0; θ) ∈ X̄ ij (τ) for τ ∈ T, x0 ∈ X .

Furthermore, it holds:

(a) ci,j(τ, 0; θ) ≡ 0 on T×Θ,
(b) ci,j : T×X ×Θ→ X satisfies the Lipschitz estimates

Lip ci,j(τ, ·; θ) ≤


K1(i)K2(i)(L1+|θ|L2)

δ−(K1(i)+K2(i))(L1+|θ|L2) for j = 1
K1(j−1)K2(j−1)(L1+|θ|L2)

δ−(K1(j−1)+K2(j−1))(L1+|θ|L2) for i = N

maxk∈{i,j−1}
2K1(k)K2(k)(L1+|θ|L2)

δ−(K1(k)+K2(k)+K1(k)K2(k))(L1+|θ|L2) else

,

Lip ci,j(τ, x0; ·) ≤


δK1(i)K2(i)(K1(i)+K2(i))L2

[δ−2(K1(i)+K2(i))L1]2
‖x0‖ for j = 1

δK1(j−1)(K1(j−1)+K2(j−1))L2

[δ−2(K1(j−1)+K2(j−1))L1]2
‖x0‖ for i = N

2Li,j maxk∈{i,j−1}
δK1(k)K2(k)(K1(k)+K2(k))L2

[δ−2(K1(k)+K2(k))L1]2

1−maxk∈{i,j−1}
2K1(k)K2(k)L1

δ−2(K1(k)+K2(k))L1

‖x0‖ else

(4.3)

for all τ ∈ T, x0 ∈ X and θ ∈ Θ, with

Li,j := 1 + max
k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k) +K1(k)K2(k))L1
,

(c) if additionally Hypothesis 4.1(iii) and the gap conditions mi,j � ai C bi for j = 1
aj−1 C mi,j � bj−1 for i = N
mi,j � ai C bi, aj−1 C mi,j � bj−1 else

hold for some mi,j ∈ {1, . . . ,m}, and if we set

δmax :=


min

{
bbi−aic

2 , ρ
mi,j
s [ai, bi]

}
for j = 1

min
{
bbj−1−aj−1c

2 , ρ
mi,j
r [aj−1, bj−1]

}
for i = N

min
{
bbi−aic

2 ,
bbj−1−aj−1c

2 , ρ
mi,j
s [ai, bi], ρ

mi,j
r [aj−1, bj−1]

}
else

,
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then the partial derivatives Dn
(2,3)ci,j exist, are continuous up to order mi,j, and there

exist reals Mn
i,j , N

n
i,j > 0, such that

‖Dn
2 ci,j(τ, x0; θ)‖ ≤Mn

i,j for 1 ≤ n ≤ mi,j ,

‖D3D
n
2 ci,j(τ, x0; θ)‖ ≤ Nn

i,j ‖x0‖ for 0 ≤ n < mi,j
(4.4)

for all τ ∈ T, x0 ∈ X and θ ∈ Θ.

Proof. The assertion is a special case of [Pöt05, Theorem 4.2]. �

At this point it is important to illuminate the lengthy Proposition 4.2 in the light of clas-
sical (continuous) dynamical systems and an exponential trichotomy. Thereto consider the
autonomous ODE

ẋ = Ax+ F (x),

such that the spectrum of A allows a decomposition into three spectral sets σ1∪̇σ2∪̇σ3, where
the points in σi have reals parts in an open interval (βi−1, αi) for i = 1, 2, 3, with real numbers
β0 < α1 < β1 < α2 < β2 < α3 := ∞, and LipF is assumed to be “small” w.r.t. the spectral
gaps of A. This guarantees an exponential 3-splitting like in (H)1 for the linear part. Then
in case 0 ∈ (β1, α2), the above ODE possesses five “classical” invariant manifolds (cf. [Kel67])
C1,1, C2,1, C2,2, C3,2, C3,3 ⊆ X , namely the stable, the center-stable, the center, the center-
unstable and the unstable manifold, respectively.

Now, for T = R, the above ODE is obviously a special case of (4.1), and if we suppose N = 3
and b1 E 0 E a2, Proposition 4.2 allows the following interpretation. The dynamic equation
(4.1) has five nontrivial invariant fiber bundles, denoted as

• Stable fiber bundle C1,1: Because of c1 C b1 and the dynamical characterization in
Theorem 4.2(a) all solutions of (4.1) on C1,1 converge to 0 exponentially for t→∞.

• Center-stable fiber bundle C2,1: All solutions of (4.1) which are not growing too fast as
t→∞ (in the sense that they are c+2 -quasibounded with c2 E b2 − δ) are contained in
C2,1, like e.g., solutions bounded in forward time.

• Center-unstable fiber bundle C3,2: All solutions of (4.1) which exist and are not growing
too fast as t→ −∞ (in the sense of c−1 -quasiboundedness with a1 + δ E c1) lie on C3,2,
like e.g., solutions bounded in backward time.

• Unstable fiber bundle C3,3: All solutions on the unstable fiber bundle exist in backward
time and converge exponentially to 0 as t→ −∞.

• Center fiber bundle C2,2: The center fiber bundle consists of those solutions which are
contained both in the center-stable and the center-unstable fiber bundle. Particularly,
all bounded solutions lie on this fiber bundle.

Here we have suppressed the dependence on the parameter θ ∈ Θ.
For the remaining section we target the question, whether the invariant fiber bundles from

Proposition 4.2 in the special case of ODEs (T = R) persist under explicit one-step discretiza-
tion of (3.6). In fact, under our assumptions the ODE (3.6) possesses an extended hierarchy
of integral manifolds Ci,jR and we prove that they essentially coincide with the inertial fiber
bundles Ci,jT of the T-equation (3.8). Furthermore, also the one-step discretization (3.11) has
an extended hierarchy of invariant fiber bundles Ĉi,jT and we are able to estimate their distance
to Ci,jT . Precisely, we have

4.3. Theorem (discretization of integral manifolds). Let ᾱj , β̄j ∈ (αj , βj) be reals satisfying
ᾱj < β̄j for 1 ≤ j < N . Assume that the Hypotheses (H)1–(H)4 are fulfilled and let the global
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Lipschitz constant of F satisfy

0 ≤ Lip2 F <
δmax

4Kmax
, Kmax :=

N−1
max
i=1

(
K̄1(i) + K̄2(i) + K̄1(i)K̄2(i)

)
(4.5)

with δmax :=
minN−1

j=1 {β̄j−ᾱj}
4 , choose a fixed δ ∈ (4Kmax Lip2 F, δmax) and assume that the

maximal step-size H > 0 is so small that beyond (3.4) we have

β̄j − ᾱj
4

< εH

(
ᾱj ,

ᾱj + β̄j
2

)
,

β̄j − ᾱj
4

< εH

(
ᾱj + β̄j

2
, β̄j

)
,

β̄j − ᾱj
2

< εH(ᾱj , β̄j)(4.6)

for 1 ≤ j < N and
p∑

n=1

Hn Lip2 φn <
min2

j=1

{
β̄j − ᾱj

}
8Kmax

− Lip2 F,(4.7)

Hp

p!
Lip2D

p
3Φ ≤ Lip2 F +

p−1∑
n=1

Hn Lip2 φn.(4.8)

Then the semi-linear ODE (3.6) satisfies the assumptions of Proposition 4.2 with

• T = R, θ = 0, F1 = F , F2 = 0, αj , βj instead of aj , bj, L0 = Lip2 F , L1 = 0,

and the T-equation (3.8) satisfies the assumptions of Proposition 4.2 with

• T = {tk}k∈I, θ = 0, F1 = F + φ, F2 = 0, āj , b̄j instead of aj , bj, K̄+
j , K̄

−
j instead

of K+
j ,K

−
j , and the projectors Qj instead of Pj (cf. Lemma 3.3), L0 = Lip2 F +∑p

n=1H
n Lip2 φn, L1 = 0.

If we define the complementary subspaces

Yij(τ) := R(Qij(τ)) =
i⊕

k=j

R(Qk(τ)), Ȳij(τ) := N (Qij(τ)) =
i⋂

k=j

N (Qk(τ)) for τ ∈ T

and the sets

ΓiR := (αi + δ, βi − δ) , Γ̄iT := {c ∈ R : ai + δ C c C bi − δ} ,

then in addition, for any 1 ≤ j ≤ i ≤ N , (j, i) 6= (1, N), where in case j > 1 we additionally
suppose I = Z, the following holds:

(a) The set

Ci,jR :=


{

(τ, x0) ∈ R×X : ϕ(3.6)(·; τ, x0; θ) ∈ X+
τ,γ(R) for all γ ∈ ΓiR

}
for j = 1{

(τ, x0) ∈ R×X : ϕ(3.6)(·; τ, x0; θ) ∈ X−τ,γ(R) for all γ ∈ Γj−1
R

}
for i = N

Ci,1R ∩ C
N,j
R else

is an invariant fiber bundle of the ODE (3.6) possessing the representation

Ci,jR =
{

(τ, η + ci,jR (τ, η)) ∈ R×X : τ ∈ R, η ∈ X ji (τ)
}

with a uniquely determined continuous mapping ci,jR : R×X → X ,
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(b) the set

Ci,jT :=


{

(τ, x0) ∈ T×X : ϕ(3.8)(·; τ, x0; θ) ∈ X+
τ,c(T) for all c ∈ Γ̄iT

}
for j = 1{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (3.8)
with ν(τ) = x0 and ν ∈ X−τ,c(T) for all c ∈ Γ̄j−1

T

}
for i = N

Ci,1T ∩ C
N,j
T else

is an invariant fiber bundle of the T-equation (3.8) possessing the representation

Ci,jT =
{

(τ, η + ci,jT (τ, η)) ∈ T×X : τ ∈ T, η ∈ Yji (τ)
}

with a uniquely determined continuous mapping ci,jT : T×X → X ,
(c) Ci,jT = Ci,jR ∩ (T×X ).

Moreover, the set

Ĉi,jT =


{

(τ, x0) ∈ T×X : ϕ(3.11)(·; τ, x0; θ) ∈ X+
τ,c(T) for all c ∈ Γ̄iT

}
for j = 1{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (3.11)
with ν(τ) = x0 and ν ∈ X−τ,c(T) for all c ∈ Γ̄j−1

T

}
for i = N

Ci,1T ∩ C
N,j
T else

is an invariant fiber bundle of the one-step discretization (3.11) possessing the representation

Ĉi,jT =
{

(τ, η + ĉi,jT (τ, η)) : τ ∈ T, η ∈ Yji (τ)
}

with a unique continuous mapping ĉi,jT : T×X → X satisfying ĉi,jT (τ, x0) = ĉi,jT (τ,Qij(τ)x0; θ) ∈
Yji (τ) for τ ∈ T, x0 ∈ X . Furthermore, we have:

(d) ĉi,jT (τ, 0) ≡ 0 on T,
(e) ĉi,jT : T×X → X satisfies the estimates

Lip ĉi,jT (τ, ·) ≤


K̄1(i)K̄2(i)(L̄0(H)+HpL̄1)

δ−(K̄1(i)+K̄2(i))(L̄0(H)+HpL̄1) for j = 1
K̄1(j−1)K̄2(j−1)(L̄0(H)+HpL̄1)

δ−(K̄1(j−1)+K̄2(j−1))(L̄0(H)+HpL̄1) for i = N

maxk∈{i,j−1}
2K̄1(k)K̄2(k)(L̄0(H)+HpL̄1)

δ−(K̄1(k)+K̄2(k)+K̄1(k)K̄2(k))(L̄0(H)+HpL̄1) else

,

∥∥∥ĉi,jT (τ, x0)− ci,jT (τ, x0)
∥∥∥ ≤Mi,j(H)Hp ‖x0‖(4.9)

for all τ ∈ T and x0 ∈ X , with

Mi,j(H) :=



K̄1(i)K̄2(i)(L̄0(H)+HpL̄1)
[δ−2(K̄1(i)+K̄2(i))L̄0(H)]2

for j = 1

K̄1(j−1)K̄2(j−1)(L̄0(H)+HpL̄1)
[δ−2(K̄1(j−1)+K̄2(j−1))L̄0(H)]2

for i = N

2L̄i,j(H) maxk∈{i,j−1}
δK̄1(k)(K̄1(k)+K̄2(k))L̄1

[δ−2(K̄1(k)+K̄2(k))L̄0(H)]2

1−maxk∈{i,j−1}
2K̄1(k)K̄2(k)L̄0(H)

δ−2(K̄1(k)+K̄2(k))L̄0(H)

else

,

(f) if additionally (H3)′, (H4)′ and the gap conditions

(4.10)

 mi,jαi < βi for j = 1
αj−1 < mi,jβj−1 for i = N
mi,jαi < βi, αj−1 < mi,jβj−1 else
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hold for some mi,j ∈ {1, . . . , q + 1}, and if we set

δmax :=



min
{
bb̄i−āic

2 , ρ
mi,j
s [āi, b̄i]

}
for j = 1

min
{
bb̄j−1−āj−1c

2 , ρ
mi,j
r [āj−1, b̄j−1]

}
for i = N

min
{
bb̄i−āic

2 ,
bb̄j−1−āj−1c

2 , ρ
mi,j
s [āi, b̄i], ρ

mi,j
r [āj−1, b̄j−1]

}
else

,

then the partial derivatives Dn
(2,3)c

i,j
T , Dn

(2,3)ĉ
i,j
T exist, are continuous up to order mi,j,

and there exist reals Mn
i,j > 0 such that

(4.11)
∥∥∥Dn

2 ĉ
i,j
T (τ, x0)−Dn

2 c
i,j
T (τ, x0)

∥∥∥ ≤Mn
i,j ‖x0‖Hp

for all τ ∈ T, x0 ∈ X and 0 ≤ n < mi,j,

with the abbreviations

L̄0(H) := Lip2 F +
p∑

n=1

Hn Lip2 φn, L̄1 := 1
p! Lip2D

p
3Φ + Lip2 φp,

L̄i,j(H) := 1 + max
k∈{i,j−1}

2K̄1(k)K̄2(k)L̄0(H)
δ − 2(K̄1(k) + K̄2(k) + K̄1(k)K̄2(k))L̄0(H)

.

Remark 4.1. (1) Note that the individual fibers of the graphs Ci,jT and Ĉi,jT are only O(H)-close
due to the dichotomy Lemma 3.3, although one has the better estimates (4.9), (4.11) concerning
the mappings ci,jT and ĉi,jT .

(2) It is crucial for assertion (c) that we work under global assumptions on the nonlinearities
and consequently have a dynamical characterization of Ci,jR and Ci,jT available. In a local
framework, such assertions need not to hold, since for example local center manifolds of time-
h-maps need not to be local center manifolds of the basic flow (cf. [Kri05]).

Proof. We subdivide the proof into three steps:
(I) In terms of the inequalities

Lip2 F <
minN−1

j=1 {βj − αj}
4Kmax

,
N−1
max
i=1
{K1(i) +K2(i) +K1(i)K2(i)} ≤ Kmax,

the assumption (4.5) guarantees that one can apply Proposition 4.2 in case of the time scale
T = R, F1 = F , θ = 0 and aj(t) ≡ αj , bj(t) ≡ βj for 1 ≤ j < N to the semi-linear ODE (3.6).
Thus, for 1 ≤ j ≤ i ≤ N , (j, i) 6= (1, N), there exist mappings ci,jR : R× X → X such that the
assertion (a) holds.

(II) We introduce a “homotopy” between the T-equation (3.8) and the one-step discretization
(3.11), namely the system (4.1) on the discrete time scale T, with mappings F1, F2 : T×X → X ,

F1(t, x) := F (t, x) + φ(t, x, µ(t))

F2(t, x) :=
(
µ(t)
H

)p
(Φp(t, x, µ(t))− φp(t, x, µ(t))) .

Obviously, for θ = 0, the equation (4.1) coincides with (3.8) (cf. Proposition 3.4), and for
θ = Hp, equation (4.1) coincides with (3.11) (cf. Proposition 3.5). From Lemma 3.3 and the
assumption (3.4) we obtain that the linear part (2.3) possesses an exponential N -splitting with
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āj , b̄j , K̄−j , K̄
+
j given in Lemma 3.3 and the complementary invariant projectors Qj . Further-

more, due to Proposition 3.4(c) and Proposition 3.5(b) we get the Lipschitz estimates

L0 := sup
t∈T

LipF1(t, ·)
(3.9)

≤ Lip2 F +
p∑

n=1

Hn Lip2 φn,

L1 := sup
t∈T

LipF2(t, ·)
(3.14)

≤ 1
p! Lip2D

p
3Φ + Lip2 φp

from, e.g., [AMR88, p. 138, Exercise 2.5K(i)]. Because of the assumption (4.6), one obtains
the inequality β̄j−ᾱj

2 < eβ̄jµ(t)−eᾱjµ(t)

µ(t) = b̄j(t)− āj(t) for 1 ≤ j < N , t ∈ T and, therefore, (4.7)
enables us to apply Proposition 4.2 to the above dynamic equation (4.1). Here, in particular,
the assumption (4.8) guarantees Hp ∈ Θ, and trivially we have 0 ∈ Θ. In any case, for
1 ≤ j ≤ i ≤ N , (j, i) 6= (1, N), Proposition 4.2 yields the existence of uniquely determined
continuous mappings ci,j : T×X ×Θ→ X , such that the graph

Ci,j(θ) =
{

(τ, η + ci,j(τ, η; θ)) : τ ∈ T, η ∈ Yji (τ)
}

for θ ∈ Θ

is an invariant fiber bundle of (4.1) possessing the dynamical characterization

Ci,j(θ) =


{

(τ, x0) ∈ T×X : ϕ(4.1)(·; τ, x0; θ) ∈ X+
τ,c(T) for all c ∈ Γi

}
for j = 1{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.1)
with ν(τ) = x0 and ν ∈ X−τ,c(T) for all c ∈ Γj−1

}
for i = N

Ci,1(θ) ∩ CN,j(θ) else

for all θ ∈ Θ, and we define

ci,jT (τ, x0) := ci,j(τ, x0; 0), ĉi,jT (τ, x0) := ci,j(τ, x0;Hp),(4.12)

Ci,jT := Ci,j(0), Ĉi,jT := Ci,j(Hp),

for τ ∈ T and x0 ∈ X . These mappings and graphs satisfy the assertions (b), (d), as well as the
first Lipschitz estimate in (e). Furthermore, we have∥∥∥ci,jT (τ, x0)− ĉi,jT (τ, x0)

∥∥∥ (4.12)
= ‖ci,j(τ, x0; 0)− ci,j(τ, x0;Hp)‖

(4.3)

≤ Lip ci,j(τ, x0; ·)Hp

for all τ ∈ T, x0 ∈ X , which gives us the second inequality in (e). To verify (f), we note that
the gap conditions (4.10) guarantee mi,j � āi C b̄i for j = 1

āj−1 C mi,j � b̄j−1 for i = N
mi,j � āi C b̄i, āj−1 C mi,j � b̄j−1 else

.

Therefore, Proposition 4.2(c) implies that ci,j(τ, ·) : X ×Θ→ X is of class Cmi,j and the mean
value inequality (cf. [Lan93, p. 342, Corollary 4.3]) yields∥∥∥Dn

2 c
i,j
T (τ, x0)−Dn

2 ĉ
i,j
T (τ, x0)

∥∥∥ (4.12)
= ‖Dn

2 ci,j(τ, x0; 0)−Dn
2 ci,j(τ, x0;Hp)‖

(4.4)

≤ Nn
i,j ‖x0‖Hp for 0 ≤ n < msi ,

and τ ∈ T, x0 ∈ X . This gives us (f).
(III) It remains to show the identity in (c). Hereto, for 1 ≤ i < N , we define γi := ᾱi+β̄i

2 ∈ ΓiR
and for the growth rate ci(t) := eγiµ(t)−1

µ(t) one obtains

δ <
β̄i − ᾱi

2
=
γi − ᾱi

2
<
eγiµ(t) − eᾱiµ(t)

µ(t)
= ci(t)− ai(t) for t ∈ T.
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In order to derive (c) we have to verify two inclusions. Here we restrict ourselves to the situation
j = 1, since the other cases yield analogously:
(⊆) Let (τ, x0) ∈ T × X such that (τ, x0) ∈ Ci,1R holds. Then the mapping ϕ(3.6)(·; τ, x0) is
γ+
i -quasibounded and since the general solutions of the ODE (3.6) and of the T-equation (3.8)

coincide on T (cf. Lemma 3.4), we get∥∥ϕ(3.8)(t; τ, x0)
∥∥ eci(τ, t) ≤ ∥∥ϕ(3.6)(t; τ, x0)

∥∥ eγi(τ−t) ≤ ∥∥ϕ(3.6)(·; τ, x0)
∥∥+

τ,γi

for all t ∈ T+
τ ; this implies ϕ(3.8)(·; τ, x0) ∈ X+

τ,ci(T), i.e., (τ, x0) ∈ Ci,1T .
(⊇) For (τ, x0) ∈ Ci,1T we have the inclusion ϕ(3.8)(·; τ, x0) ∈ X+

τ,ci(T) and we are going to show
ϕ(3.6)(·; τ, x0) ∈ X+

τ,γi(R). Thereto, an elementary Gronwall argument leads to the inequality∥∥ϕ(3.6)(t; tk, x0)
∥∥ ≤ e(|A|0+L1)H ‖x0‖ for t ∈ [tk, tk+1], k ∈ N0 and consequently we arrive at∥∥ϕ(3.6)(t; τ, x0)
∥∥ (2.2)

=
∥∥ϕ(3.6)(t; tk, ϕ(3.6)(tk; τ, x0))

∥∥
≤ e(|A|0+L1)H

∥∥ϕ(3.6)(tk; τ, x0)
∥∥

≤ e(|A|0+L1)H
∥∥ϕ(3.8)(·; τ, x0)

∥∥+

τ,ci
eci(tk, τ)

≤ e(|A|0+L1)H max
{

1, eγiH
}∥∥ϕ(3.8)(·; τ, x0)

∥∥+

τ,ci
eγi(t−τ) for t ∈ R+

τ ,

which implies that the solution ϕ(3.6)(·; τ, x0) is γ+
i -quasibounded, i.e., ϕ(3.6)(·; τ, x0) ∈ Ci,jR .

Therefore, the proof of Theorem 4.3 is finished. �
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spaces, Six Lectures on Dynamical Systems (B. Aulbach and F. Colonius, eds.), World Scientific,

Singapore, 1996, pp. 45–119.
[Bey87] W.-J. Beyn, On the numerical approximation of phase portraits near stationary points, SIAM Journal

of Numerical Analysis 24(5) (1987), 1095–1112.

[BL87] W.-J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numerical
Functional Analysis and Optimization 9 (1987), 381–414.

[BP01] M. Bohner and A. Peterson, Dynamic Equations on Time Scales — an Introduction with Applications,
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