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Abstract

Besides being interesting infinite-dimensional dynamical systems in discrete time, in-
tegrodifference equations successfully model growth and dispersal of populations with
nonoverlapping generations, and are often illustrated by simulations. This paper points
towards and initiates a mathematical foundation of such simulations using generic
methods to numerically discretize (and solve) integral equations. We tackle basic prop-
erties of a flexible class of integrodifference equations, as well as of their collocation
and degenerate kernel semi-discretizations on the state space of continuous functions
over a compact domain. Moreover, various estimates for the global discretization error
are provided. Numerical simulations illustrate and confirm our theoretical results.
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1. Introduction

The numerical analysis of integral equations is a well-studied field (cf. for instance
the monographs [1, 2, 5, 11]). It provides efficient algorithms to solve linear and non-
linear equations, as well as eigenvalue problems for various classes of integral opera-
tors (Fredholm, Volterra, Hammerstein, Urysohn, etc.). Roughly, these tools allow a
classification into Nyström, projection and degenerate kernel methods.

The paper at hand abandons a classical and static perspective of solving, say a fixed
integral equation or determining the spectrum of an integral operator numerically. We
rather investigate the behavior discrete semi-dynamical systems given by the iterates
of nonlinear integral operators — one speaks of integrodifference equations – along
with their spatial discretization. In particular, the iterates of Hammerstein integral
operators serve as successful and increasingly popular models in theoretical ecology
(e.g. [10, 14, 9]): If u : Ω → R describes the spatial distribution of a population
over a habitat Ω, then the corresponding growth and dispersal between consecutive
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nonoverlapping generations is captured via a Hammerstein operator

H(u)(x) :=

∫
Ω

k(x, y)g(y, u(y)) dy for all x ∈ Ω, (1.1)

whereas, when dispersal precedes growth, an adequate model is

N(u)(x) := G

(
x,

∫
Ω

k(x, y)u(y) dy

)
for all x ∈ Ω. (1.2)

Here, g,G : Ω × R → R are growth functions commonly used in theoretical ecology
of e.g. Beverton-Holt, Ricker or logistic type (cf. [10, 9]), while k : Ω2 → R is a
probability kernel yielding the dispersal of species. Yet another special case covered
are so-called spatial difference equations having right-hand sides

G(u)(x) := g(x, u(x)) for all x ∈ Ω (1.3)

and which e.g. model populations of sedentary species. Also vector-valued versions of
(1.1)–(1.3) are considered to capture multi-species relationships (e.g. [14]).

Such modelling aspects serve as motivation, but are not our main focus. We rather
aim to achieve two goals in this paper:

• We abstractly study the iterates of operators like H,N or G on the space of con-
tinuous functions over a compact set Ω ⊂ Rκ (the state space); other function
spaces are possible, but require a different analysis. The resulting discrete dy-
namical systems are called integrodifference equations (short IDEs). They are
allowed to be nonautonomous, i.e. their right-hand sides (1.1)–(1.3) can depend
explicitly on time in an aperiodic way. Such a generalization is well-motivated
from applications [9]. Whence, we lay the basics for a qualitative theory of IDEs.

• When simulating the dynamics of IDEs, the problem needs to be discretized,
which allows two approaches: For Nyström methods the integral is replaced by
a quadrature/cubature rule and one immediately obtains a recursion on a finite-
dimensional space. Alternatively, one proceeds in two steps: First, the infinite-
dimensional state space is replaced with a finite-dimensional subspace by ap-
plying a projection or degenerate kernel method. Since our state space is not a
Hilbert space, projection methods will be of collocation type here. This yields a
semi-discretization, because the resulting operators still contain integrals. Sec-
ond, one applies a cubature rule in order to approximate these remaining inte-
grals. The resulting full discretizations are obtained by discrete projection (col-
location) or discrete degenerate kernel methods (cf. [1, 5, 11]). We therefore pre-
pare preliminary results justifying numerical simulations via semi-discretizations
for a general class of IDEs such as (1.1)–(1.3). Nonetheless, an analysis of such
full discretizations (i.e. Nyström, discrete collocation and discrete degenerate
kernel methods) is reserved for a future paper.

In detail, the structure of this contribution is as follows: Sect. 2 introduces a general
class of nonautonomous IDEs containing such with right-hand sides (1.1)–(1.3) as spe-
cial cases. We provide a flexible framework proving the underlying well-posedness,
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differentiability, as well as Lipschitz and complete continuity properties of IDEs. This
allows to embed such problems into the recent theory of nonautonomous dynamical
systems in discrete time (see e.g. [15]). For a subclass, still containing (1.1) and (1.2),
a smoothing property is shown, which guarantees that already the first iteration of a
continuous initial function inherits the differentiability of the right-hand side. This
observation turns out to be helpful in error estimates. Also an interlude on the com-
pactness of linear IDEs and the explicit form of the resulting variational equations is
given. Sect. 3 introduces two semi-discretizations for IDEs based on the commonly
used collocation and degenerate kernel methods to solve integral equations numeri-
cally [5, 1, 11]. They substitute IDEs by difference equations in finite-dimensional
subspaces. For these spatially discretized problems, similar questions as in Sect. 2
concerning well-definedness, differentiability, Lipschitz continuity and the associate
variational equation are addressed. Furthermore, the local discretization error measur-
ing the discrepancy after one iteration is introduced. Appropriate closeness notions are
given by means of (bounded and Cm-) convergence. We provide explicit illustrations
for collocation and degenerate kernel approximations based on piecewise linear func-
tions. In general, linear or quadratic convergence orders can be realized only when the
state space is restricted to C1- resp. C2-functions. Nevertheless, under the smoothing
property mentioned above, a relevant special case of IDEs including (1.1), (1.2) yields
these convergence orders on the space of continuous functions. In Sect. 4 we provide
estimates how the global discretization error between the solutions of the original and
of the discretized equation develops over time t. For general IDEs, the global error
typically grows exponentially as t→∞ (cf. Thm. 4.1). Under a contraction condition,
however, convergence of the error is established on unbounded intervals. In order to
prepare future applications to the numerical dynamics for IDE, we also derive estimates
relating the global errors between solution derivatives. An illustration of the obtained
results is given in Sect. 5 by means of three examples. They confirm the exponential
growth of the global discretization error as t → ∞, the predicted (quadratic) error
decay over finite time-intervals, as well as the smoothing property of solutions.

Finally, two appendices conclude the paper. They contain an ambient Grönwall
lemma in App. A, which is required to prove error estimates. For the reader’s con-
venience, the concluding App. B presents a rigorous, purposive study of substitution
and Urysohn (nonlinear Fredholm) integral operators in a consistent form, rather than
referring to diverse sources beyond e.g. [13].

Notation

A discrete interval I is a nonempty intersection of a real interval with the inte-
gers Z and I′ := {t ∈ I : t+ 1 ∈ I}. We write R+ := [0,∞) and |·| for norms on
finite-dimensional spaces. In a metric space (M,d), Br(x) is the open ball with ra-
dius r > 0 and center x, B̄r(x) is the closed counterpart and Br(A) := {x ∈ M :
infa∈A d(x, a) < r} defines the open r-neighborhood of a nonempty subset A ⊆M .

On the spaces Rd we throughout use

|x| := max {|x1| , . . . , |xd|} (1.4)
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as norm, which induces the maximum absolute row sum as matrix norm

|K| = p
max
i=1

d∑
l=1

|kil| for all K ∈ Rd×p. (1.5)

Let X,Y be normed spaces (with norm ‖·‖) and IX the identity map on X . The
space of bounded j-linear mappings from Xj to Y is denoted by Lj(X,Y ), j ∈ N;
L(X,Y ) := L1(X,Y ), L(X) := L(X,X), L0(X,Y ) := Y and GL(X,Y ) are the
invertible elements of L(X,Y ). For T ∈ L(X,Y ), R(T ) := TX ⊆ Y is the range.

If a map f : X → Y satisfies a Lipschitz condition, then lip f denotes its smallest
Lipschitz constant. When f : X × P → Y additionally depends on a parameter from
some set P , we write lip1 f := supp∈P lip f(·, p) and deploy an analogous notation
for Lipschitz constants w.r.t. other variables. The modulus of continuity of f is

ω(δ, f) := sup
‖x−x̄‖<δ

‖f(x)− f(x̄)‖ for all δ > 0

and precisely the uniformly continuous functions f satisfy limδ↘0 ω(δ, f) = 0. The
class N := {Γ : R+ → R+ | limρ↘0 Γ(ρ) = 0} of limit 0 functions is convenient.

Suppose throughout that Ω ⊂ Rκ denotes a nonempty, compact set without isolated
points. The space of functions u : Ω → R, whose derivatives Dju up to order j ≤ m
have a continuous extension from the interior Ω◦ 6= ∅ to Ω is denoted by Cm(Ω),
m ∈ N0. Since Ω is compact, Cm(Ω) is a Banach space w.r.t. the norm

‖u‖m :=
m

max
j=0
|u|j , |u|j := max

x∈Ω

∣∣Dju(x)
∣∣ for all 0 ≤ j ≤ m;

we write C(Ω) := C0(Ω), ‖·‖ := ‖·‖0. The cartesian product C(Ω)d is identified
with the space of continuous vector-valued functions u : Ω → Rd (similarly for other
function spaces). Since Ω is kept fixed throughout, we abbreviate

Cd := C(Ω)d, Cmd := Cm(Ω)d.

2. Integrodifference equations

Given a discrete interval I, let us first provide an abstract framework in terms of
general nonautonomous difference equations

ut+1 = Ft(ut) (I0)

having right-hand sides Ft : Cd → Cd, t ∈ I′. For simplicity we assume that (I0) is
globally defined, but our analysis extends to the situation when Ft is merely given on
ambient (e.g. convex) subsets of Cd.

Given an initial time τ ∈ I, a forward solution to (I0) is a sequence (φt)τ≤t in Cd
satisfying φt+1 = Ft(φt) for all τ ≤ t, t ∈ I′ and an entire solution (φt)t∈I fulfills
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this identity on I′. The unique forward solution starting in the initial state uτ ∈ Cd is
determined by the compositions

ϕ(t; τ, uτ ) :=

{
Ft−1 ◦ . . . ◦ Fτ (uτ ), τ < t,

uτ , t = τ
(2.1)

and denoted as general solution to (I0). If the functions Ft, t ∈ I′, are of class C1, then

D3ϕ(τ ; τ, uτ ) = ICd , D3ϕ(t; τ, uτ ) =

t−1∏
s=τ

DFs(ϕ(s; τ, uτ )) (2.2)

hold for all τ ≤ t and uτ ∈ Cd (by mathematical induction). One says (I0) is periodic,
if I = Z and there exists a period θ ∈ N such that Ft+θ = Ft for all t ∈ Z. An
autonomous equation is 1-periodic, i.e. the right-hand sides of (I0) do not depend on t.

Being more specific, as standing assumptions, for every t ∈ I′ the right-hand sides
Ft of (I0) are composed of two operators:

• If Gt : Ω× Rd × Rp → Rd are continuous, then the substitution operators

Gt : Cd × Cp → Cd, Gt(u, v)(x) := Gt(x, u(x), v(x)) for all x ∈ Ω

are well-defined and continuous (see App. B.1 for this and more).

• If the kernel functions ft : Ω× Ω× Rd → Rp are continuous, then the Urysohn
integral operators

Ut : Cd → Cp, Ut(u)(x) :=

∫
Ω

ft(x, y, u(y)) dy for all x ∈ Ω (2.3)

are well-defined and completely continuous (see App. B.2).

In the most general form considered here, the difference eqn. (I0) possesses

Ft(u)(x) := Gt

(
x, u(x),

∫
Ω

ft(x, y, u(y)) dy

)
for all x ∈ Ω (2.4)

as right-hand sides, or in a brief notation

Ft(u) = Gt(u,Ut(u)) for all u ∈ Cd. (2.5)

We consequently speak of nonlinear Urysohn eqns. (I0) on Cd, which include right-
hand sides (1.1)–(1.3). Let us first address well-definedness and smoothness properties:

Proposition 2.1. The general solution ϕ(t; τ, ·) : Cd → Cd of (I0) is well-defined for
all τ ≤ t, as well as bounded, continuous and uniformly continuous on bounded sets.

Proof. Let s ∈ I′. Thanks to Thm. B.1 the substitution operators Gs : Cd ×Cp → Cd,
and due to Thm. B.5 also the Urysohn operators Us : Cd → Cp, are well-defined,
bounded, continuous and uniformly continuous on any bounded subset B ⊂ Cd × Cp
resp. B ⊂ Cd. This carries over to the composition Fs from (2.5) and by (2.1) also to
their composition, that is, the general solution.
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More can be said for pure integral operators, where the mapping Gt does not de-
pend on the second variable, i.e. Ft coincides with a function

F̄t : Cd → Cd, F̄t(u)(x) := Ḡt

(
x,

∫
Ω

ft(x, y, u(y)) dy

)
for all x ∈ Ω, (2.6)

where Ḡt : Ω× Rp → Rd is continuous.

Corollary 2.2. Let τ < t. If there exists a τ ≤ t0 < t so that Ft0 = F̄t0 is of the form
(2.6), then ϕ(t; τ, ·) : Cd → Cd is completely continuous.

Proof. Due to (2.6) the right-hand side F̄t0 = Ḡt0 ◦Ut0 : Cd → Cd is a composition of
the completely continuous mapping Ut0 : Cd → Cp (cf. Thm. B.5) with the bounded,
continuous map Ḡt0 : Cp → Cd (see Thm. B.1), thus completely continuous. The
claim follows by the same argument from (2.1), since ϕ(t; τ, ·) is a composition of F̄t0
with bounded and continuous mappings Fs, s 6= t0.

Corollary 2.3. If for every s ∈ I′, r > 0 there exists a function λs,r : Ω2 → R+ such
that λs,r(x, ·) is measurable on Ω with `s(r) := supx∈Ω

∫
Ω
λs,r(x, y) dy <∞ and

|fs(x, y, z)− fs(x, y, z̄)| ≤ λs,r(x, y) |z − z̄| for all x, y ∈ Ω, z, z̄ ∈ B̄r(0),

then B ⊆ B̄r(0) ⊂ Cd implies lipFs|B ≤ Ls(r), where

• Ls(r) := lip(2,3)Gs max
{

1, `s(r)
}

, provided lip(2,3)Gs <∞,

• Ls(r) := lip2Gs + lip3Gs`s(r), provided lip2Gs, lip3Gs <∞.

If Fs = F̄s is of the form (2.6), then Ls(r) = lip2Gs`s(r) holds.

Proof. Let r > 0 and s ∈ I′. In Cor. B.6 it is shown that lipUs|B ≤ `s(r) holds for
subsets B ⊆ B̄r(0). The assumed global Lipschitz condition on Gs extends to Gs (cf.
Cor. B.2), which yields the assertion by elementary estimates.

We point out that Cor. 2.3 has immediate implications for the global dynamics of
nonautonomous IDEs (I0).

Remark 2.4 (forward and pullback convergence). Assume that Us satisfies a global
Lipschitz condition or that ls := supr≥0 Ls(r) <∞, and suppose u ∈ Cd:

• Let I be unbounded above and τ ∈ I. If (φt)τ≤t is any forward solution to (I0)
and the limit relation

∏∞
s=τ ls = 0 holds, then mathematical induction yields

‖ϕ(t; τ, u)− φt‖ = ‖ϕ(t; τ, u)− ϕ(t; τ, φτ )‖ ≤

(
t−1∏
s=τ

ls

)
‖u− φτ‖ −−−→

t→∞
0.

Thus, φ is globally forward attractive and all solutions to (I0) are asymptotically
forward equivalent; that is, they converge to each other.
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• Let I be unbounded below. If there exists a bounded entire solution (φt)t∈I of
(I0) and the limit relation

∏t0
s=−∞ ls = 0 for some t0 ∈ I′ holds, then (as above)

‖ϕ(t; τ, u)− φt‖ ≤

(
t−1∏
s=τ

ls

)
‖u− φτ‖ −−−−−→

τ→−∞
0 for all t ≤ t0.

Hence, φ is globally pullback attractive (cf. [15, pp. 62–63, Def. 2.4.4]).

The next results rely on the classes ofCm1 - andCmf -functions introduced in App. B:

Proposition 2.5 (differentiability of ϕ(t; τ, u)). Let m ∈ N0. If fs are of class Cm1
and Gs are Cm-functions for every s ∈ I′, then ϕ(t; τ, u) ∈ Cm(Ω)d for all τ ≤ t and
u ∈ Cm(Ω)d.

Proof. Let s ∈ I′, u ∈ Cm(Ω)d and w.l.o.g. m ∈ N. Combining Thm. B.3 and B.7, it
follows from (2.5) and the chain rule [12, p. 337] that Fs(u) is of class Cm. Again the
chain rule and mathematical induction imply the claim with (2.1).

If the kernel functions fs are differentiable in the first argument, and Gs are dif-
ferentiable as well for s ∈ I′, then IDEs with right-hand sides (2.6) have a smoothing
property. This is convenient in error estimates for discretizations (cf. Sect. 3), because
continuous initial functions inherit the kernel’s smoothness after one iteration.

Corollary 2.6 (smoothing property). If (I0) has right-hand sides (2.6) for all s ∈ I′,
then ϕ(t; τ, u) ∈ Cm(Ω)d for every τ < t and u ∈ Cd.

Proof. Given u ∈ Cd, we obtain from Thm. B.7 that Us(u) ∈ Cm(Ω)d holds. Then the
representation Fs(u)(x) ≡ Gs(x,Us(u)(x)) on Ω identifies Fs(u) as a composition of
Cm-functions and the claim follows by induction from (2.1).

Proposition 2.7 (differentiability of ϕ(t; τ, ·)). Let m ∈ N. If fs and Gs are of class
Cmf for every s ∈ I′, then ϕ(t; τ, ·) ∈ Cm(Cd, Cd) for all τ ≤ t.

Proof. Let s ∈ I′. From Thm. B.8 the mapping Us : Cd → Cp is of class Cm, and
so is u 7→ (u,Us(u)). Then Thm. B.4 and the chain rule [12, p. 337] imply that also
the composition Fs (cf. (2.5)) is m-times continuously differentiable. Using (2.1) this
extends to the compositions ϕ(t; τ, ·).

2.1. Linear integrodifference equations

The linear-homogeneous IDEs being relevant for our purposes read as

vt+1 = Ltvt

with coefficients Lt := Mt + Kt being the sum of two operators. For every t ∈ I′ and

• continuous Mt : Ω→ L(Rd), consider the multiplication operator

(Mtv)(x) := Mt(x)v(x) for all x ∈ Ω, (2.7)
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• kernels kt : Ω2 → L(Rd) such that kt(x, ·) : Ω → L(Rd) is measurable for all
x ∈ Ω, consider the Fredholm integral operator

(Ktv)(x) :=

∫
Ω

kt(x, y)v(y) dy for all x ∈ Ω. (2.8)

Proposition 2.8. If ks : Ω2 → L(Rd) satisfies ˜̀
s := supx∈Ω

∫
Ω
|ks(x, y)| dy < ∞

for all s ∈ I′, then the transition operator

Φ(t, τ) ∈ L(Cd), Φ(t, τ) :=

{
Lt−1 · · ·Lτ , τ < t,

ICd , τ = t
(2.9)

is well-defined, ‖Φ(t, τ)‖ ≤
∏t−1
s=τ `s for all τ ≤ t and `s := ˜̀

s + maxx∈Ω |Ms(x)|.

Proof. Let s ∈ I′. It is not hard to see that every Ms ∈ L(Cd) from (2.7) is well-
defined and satisfies ‖Ms‖ = maxx∈Ω |Ms(x)| =: ms. In [13, p. 167, Prop. 3.4] it
is shown that Ks ∈ L(Cd) from (2.8) is continuous and fulfills ‖Ks‖ ≤ ˜̀

s. Hence,
Ls ∈ L(Cd) with ‖Ls‖ ≤ ms+˜̀

s. Then induction yields that Φ(t, τ) ∈ L(Cd) is well-
defined using (2.9), and moreover one has the norm estimate for Φ(t, τ), τ ≤ t.

Corollary 2.9. Let τ < t. If kt0 : Ω2 → L(Rd) additionally satisfies

lim
x→ξ

∫
Ω

|kt0(x, y)− kt0(ξ, y)| dy uniformly in ξ ∈ Ω

and Mt0 = 0 for some τ ≤ t0 < t, then Φ(t, τ) ∈ L(Cd) is compact.

Proof. Due to [13, p. 167, Prop. 3.4] the operator Lt0 = Kt0 is compact. Therefore,
[8, p. 215, Prop. 1.2] and (2.9) imply that the composition Φ(t, τ) is compact.

2.2. Variational equations
Suppose φ = (φt)t∈I is an entire solution to (I0). If fs and Gs are of class C1

f for
all s ∈ I′, then Fs : Cd → Cd is continuously differentiable due to Prop. 2.7 and

vt+1 = DFt(φt)vt (V0)

is denoted as variational equation of (I0) along φ. It spectral properties determine the
stability of φ.

Corollary 2.10 (variational equation). Let (φt)t∈I be an entire solution to (I0) and
s ∈ I′. If fs and Gs are of class C1

f , then DFs(φs) = Ms + Ks holds with the
summands (2.7) and (2.8) for all x ∈ Ω and v ∈ Cd explicitly given as

(Msv)(x) := D2Gs

(
x, φs(x),

∫
Ω

fs(x, y, φs(y)) dy

)
v(x),

(Ksv)(x) := D3Gs

(
x, φs(x),

∫
Ω

fs(x, y, φs(y)) dy

)∫
Ω

D3fs(x, y, φs(y))v(y) dy.

If Fs = F̄s is of the form (2.6), then DFs(φs) = Ks ∈ L(Cd) is compact.
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Proof. From Prop. 2.7 we know that Fs = ϕ(s + 1; s, ·) ∈ C1(Cd, Cd) and the chain
rule [12, p. 337] implies DFs(φ) = D1Gs(φ,Us(φ)) + D2Gs(φ,Us(φ))DUs(φ) due
to (2.5). Using the explicit derivatives from Thms. B.4 and B.8, we conclude the claim.
In case D2Gs vanishes, then Ms = 0 and DFs(φ) = D2Gs(φ,Us(φ))DUs(φ) is
the composition of a bounded (multiplication) operator with the compact derivative
DUs(φ) (cf. Thm. B.8) and is therefore compact itself (see [8, p. 215, Prop. 1.2]).

3. Semi-discretizations of integrodifference equations

Applying a semi-discretization method to an IDE (I0) yields a family of nonauto-
nomous difference equations

ut+1 = Fnt (ut) (In)

with right-hand sides Fnt : Cd → Cd, t ∈ I′, depending on n ∈ N and values in a finite-
dimensional linear (or affine) subspace of Cd. The same terminology as introduced for
(I0) applies to each (In) and particularly its general solution is denoted by ϕn.

The (local) discretization error εnt : Cd → Cd,

εnt (u) := Ft(u)− Fnt (u)

captures the distance between solutions to (I0) and (In) starting in the same point after
one iteration. Since n ∈ N is understood as discretization parameter, εnt (u) is supposed
to become arbitrarily small as n→∞. To be more precise, we say Fnt or (In)n∈N is

• convergent, if limn→∞ ‖εnt (u)‖ = 0 holds for all t ∈ I′, u ∈ Cd

• bounded convergent, if limn→∞ supu∈B ‖εnt (u)‖ = 0 holds for all t ∈ I′ and
bounded B ⊂ Cd

• Cm-convergent with m ∈ N0, if there is a convergence function Γ0 ∈ N and for
every bounded B ⊂ Cm(Ω)d (in the Cm-topology) there is a K(B) ≥ 0 with

‖εnt (u)‖ ≤ K(B)Γ0( 1
n ) for all t ∈ I′, n ∈ N and u ∈ B. (3.1)

In case there exist C, γ > 0 with Γ0(ρ) ≤ Cργ for all ρ > 0 one says (In)n∈N
has convergence order γ > 0.

Note that C0-convergence is sufficient for bounded convergence, which in turn implies
convergence. Moreover, Cm−1-convergence yields Cm-convergence for m ∈ N.

Under natural assumptions (see below), the right-hand side of (In) inherits contin-
uous differentiability from (I0). This allows to consider the variational equation

vt+1 = DFnt (φt)vt = [Mn
t + Kn

t ]vt (Vn)

associated to an entire solution (φt)t∈I of (In). The precise form of (In) and (Vn)
depends on the particular discretization method studied next:
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3.1. Collocation methods

Collocation methods for linear integral equations were thoroughly discussed in
[1, pp. 49ff, Chapt. 3], [5, pp. 81ff, Sect. 4.4] and [11, pp. 241, Chapt. 13]. Our
straight-forward generalization to nonlinear problems is as follows: Assume that Xn,
n ∈ N, are subspaces of the real-valued continuous functions C1 with finite dimension
dn := dimXn having a basis {e1, . . . , edn}. We choose distinct collocation points
ξ1, . . . , ξdn ∈ Ω and require the interpolation condition

(ei(ξj))
dn
i,j=1 ∈ GL(Rdn). (3.2)

Given this, Pnu =
∑dn
j=1 ej(·)υj define projections Pn : Cd → Xd

n, where the vectors
υ1, . . . , υdn ∈ Rd are (by (3.2) uniquely) determined via the interpolation conditions∑dn
j=1 ej(ξi)υ

j = u(ξi) for all 1 ≤ i ≤ dn.
A collocation method to approximate (I0) now reads as

Fnt (u) := PnFt(u) =

dn∑
j=1

ej(·)υjt . (3.3)

Each evaluation of Fnt , t ∈ I′, requires to determine the vectors υ1
t , . . . , υ

dn
t ∈ Rd from

the linear equations

dn∑
j=1

ej(ξi)υ
j
t = Gt

(
ξi, u(ξi),

∫
Ω

ft(ξi, y, u(y)) dy

)
for all 1 ≤ i ≤ dn.

Accordingly, Fnt (u) ∈ Xd
n holds and we obtain merely a semi-discretization (3.3),

since dn Rd-valued integrals remain to be computed.

Theorem 3.1 (collocation methods). Let m ∈ N0 and n ∈ N. The general solution
ϕn(t; τ, ·) : Cd → Xd

n of collocation methods (3.3) is well-defined, completely contin-
uous and uniformly continuous on bounded sets for τ < t. In case supn∈N ‖Pn‖ <∞
these properties hold uniformly in n ∈ N. Moreover, one has:

(a) If e1, . . . , edn ∈ Cm(Ω), then ϕn(t; τ, u) ∈ Cm(Ω)d for all τ < t, u ∈ Cd.
(b) If fs, Gs are of class Cmf for every s ∈ I′, then ϕn(t; τ, ·) ∈ Cm(Cd, Cd).

Proof. Let n ∈ N, s ∈ I′. By (3.3) the collocation method Fns is a composition of a
linear operator Pn ∈ L(Cd) with Fs. Thus, Fns and ϕn(t; τ, ·) inherit the corresponding
properties of Fs resp. ϕ(t; τ, ·) stated in Prop. 2.1. Moreover, since Pn has finite-
dimensional range, Fns is completely continuous, and so is ϕn(t; τ, ·) for τ < t. The
uniformity of these properties in n ∈ N for bounded sequences (Pn)n∈N is equally
evident from (3.3).

(a) Given u ∈ Cd, it immediately follows from (3.3) that Fnt (u) inherits its smooth-
ness from the basis functions e1, . . . , en, and so does ϕn(t; τ, u).

(b) Due to Prop. 2.7 the mapping Fs = ϕ(s + 1; s, ·) is of class Cm, and so is
Fns = PnFs. Then the claim for ϕn(t; τ, ·) results from the chain rule [12, p. 337].
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Corollary 3.2. In the setting of Cor. 2.3 the following implication holds:

B ⊆ B̄r(0) ⊂ Cd ⇒ lipFns |B ≤ ‖Pn‖Ls(r) for all r > 0, s ∈ I′, n ∈ N.

Proof. Let r > 0 and s ∈ I′. If u, ū ∈ B ⊆ B̄r(0), then

‖Fns (u)− Fns (ū)‖
(3.3)
≤ ‖Pn‖ ‖Fs(u)− Fs(ū)‖

and the concluding estimate in Cor. 2.3 guarantees the assertion.

Corollary 3.3 (variational collocation equation). Let n ∈ N, s ∈ I′ and (φt)t∈I be an
entire solution to (In) given in (3.3). If fs and Gs are of class C1

f , then the derivative
DFns (φs) ∈ L(Cd, X

d
n) is compact and given by DFns (φs) = PnMs + PnKs.

Proof. Due toDFns (φs) = PnDFs(φs) the formula forDFns (φs) follows by Cor. 2.10
and (3.3). Furthermore, [13, p. 89, Prop. 6.5] shows that DFns (φs) is compact.

3.1.1. Lagrangian interpolation
Due to Cor. 3.2 the norms of the projections Pn play a crucial role to preserve

uniformity, and in the light of Rem. 2.4 and its implications, for contractiveness under
discretization. For Langrangian interpolation, that is, when (3.2) is strengthened to

ei(ξj) = δij for all 1 ≤ i, j ≤ dn, (3.4)

one deduces: According to [1, p. 51, (3.1.8)] the projections pn : C1 → Xn given by
pnu :=

∑dn
j=1 ej(·)u(ξj) satisfy ‖pn‖ = maxx∈Ω

∑dn
j=1 |ej(x)| and thus (1.4) implies

that ‖Pnu‖ = max {‖pnu1‖ , . . . , ‖pnud‖} ≤ maxx∈Ω

∑dn
j=1 |ej(x)| ‖u‖ , i.e.

‖Pn‖ ≤ max
x∈Ω

dn∑
j=1

|ej(x)| for all n ∈ N. (3.5)

Lagrangian interpolation furthermore allows the explicit representation

Fnt (u) =

dn∑
j=1

Gt

(
ξj , u(ξj),

∫
Ω

ft(ξj , y, u(y)) dy

)
ej

for the right-hand side of (In) and

Mn
t v :=

dn∑
j=1

D2Gt

(
ξj , φt(ξj),

∫
Ω

ft(ξj , y, φt(y)) dy

)
v(ξj)ej ,

Kn
t v :=

dn∑
j=1

D3Gt

(
ξj , φt(ξj),

∫
Ω

ft(ξj , y, φt(y)) dy

)
·
∫

Ω

D3ft(ξj , y, φt(y))v(y) dyej for all t ∈ I′, v ∈ Cd

in the variational equation (Vn) (cf. Cor. 3.3). We continue with two special cases:
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3.1.2. Piecewise linear interpolation on intervals
Let Ω := [a, b] and define ξj := a + j b−an for 0 ≤ j ≤ n. If Xn is the space of

continuous, piecewise affine functions over [a, b] with collocation points {ξ0, . . . , ξn},
then dn = n+ 1. We choose the basis {e0, . . . , en} ⊂ C[a, b] of hat functions

ej : [a, b]→ R+, ej(x) := max
{

1− n |x−ξj |b−a , 0
}

for all 0 ≤ j ≤ n.

They fulfill (3.4) (the interpolation is Lagrangian) and (3.5) implies ‖Pn‖ = 1, n ∈ N.
Hence, for piecewise linear collocation we obtain from Thm. 3.1 and Cor. 3.2:

• ϕn(t; τ, u) ∈ Cd for all τ ≤ t, u ∈ Cd.

• lipFns |B ≤ Ls(r) for s ∈ I′ and B ⊂ B̄r(0) ⊂ Cd, i.e. the Lipschitz conditions
are preserved and uniform in n ∈ N.

The interpolation estimates [6, p. 241, p. 247] yield the local discretization error

‖εnt (u)‖ ≤


ω( b−an ,Ft(u)), Ft(u) ∈ C[a, b],
b−a
4n ω( b−an ,Ft(u)′), Ft(u) ∈ C1[a, b],

(b−a)2

8n2 |Ft(u)|2 , Ft(u) ∈ C2[a, b];

whence, the convergence order depends on the smoothness of Ft(u), t ∈ I′. Let us
illuminate this using our above convergence notions: Because [a, b] is compact, the
functions Ft(u) : [a, b] → Rd are uniformly continuous. Thus, piecewise linear in-
terpolation yields a convergent method (In)n∈N at least. The question for convergence
rates, however, depends on the structure of the right-hand sides for (I0). For this reason,
we suppose that Gt is of class Cm and that ft is of class Cm1 .

• If Ft is of the general form (2.4), then Prop. 2.5 implies Ft(u) ∈ Cm[a, b]d for
arguments u ∈ Cm[a, b]d. In case m = 1 the coarse estimate

ω( b−an ,Ft(u)′) ≤ 2 ‖Ft(u)′‖ for all n ∈ N, t ∈ I′

thus implies (3.1) with convergence function Γ0(ρ) := b−a
2 ρ and

K(B) := sup
t∈I′

sup
u∈B
‖Ft(u)′‖ for every C1-bounded B ⊂ C1[a, b]d.

Hence, piecewise linear collocation is C1-convergent of order 1. In case m = 2

we obtain (3.1) with the functions Γ0(ρ) := (b−a)2

8 ρ2 and

K(B) := sup
t∈I′

sup
u∈B
‖Ft(u)′′‖ for every C2-bounded B ⊂ C2[a, b]d

and therefore even C2-convergence of order 2 holds. The explicit form of the
derivatives Ft(u)(m) shows that supu∈B

∥∥Ft(u)(m)
∥∥ are always finite for every

Cm-bounded set B ⊂ Cm[a, b]d and m ∈ {1, 2}. Yet, one has to assume that
the further supremum over t ∈ I′ in the definition of K(B) exists.

12



• If Gt = Ḡt and consequently Ft = F̄t are of the form (2.6), then the derivatives
of F̄t(u) do not depend on the derivatives of u. This guarantees that (In)n∈N
is C0-convergent of respective order m with the above K(B) and Γ0(ρ). Here,
supu∈B

∥∥Ft(u)(m)
∥∥ exist for every bounded set B ⊂ C[a, b]d in the ‖·‖-norm.

In conclusion, error estimates for general right-hand sides (2.4) require smooth argu-
ments, whereas IDEs given by (2.6) can be treated in a C0-setting.

3.1.3. Piecewise linear interpolation in Rκ
Piecewise linear interpolation extends to higher dimensional domains and we con-

sider a rectangle Ω := [a1, b1]× . . .× [aκ, bκ], where each interval [aj , bj ], 1 ≤ j ≤ κ
may have n subdivisions. If ej0, . . . , e

j
n : [aj , bj ] → R+, 1 ≤ j ≤ κ, denote the hat

functions as introduced in Sect. 3.1.2, then we define their multivariate version

eι(x) :=

κ∏
j=1

ejιj (xj) for all x = (x1, . . . , xκ) ∈ Ω, ι = (ι1, . . . , ικ) ∈ {0, . . . , n}κ

and choose {eι : Ω→ R+ | ι ∈ {0, . . . , n}κ} as basis of Xn ⊂ C1, thus having di-
mension dn = (n + 1)κ. It is not hard to see that eι(x) ∈ [0, 1] for all x ∈ Ω and that
the interpolation is Lagrangian.

Lemma 3.4. (a)
∑
ι∈{0,...,n}κ eι(x) ≡ 1 on Ω.

(b) If u ∈ C2(Ω), then ‖u− pnu‖ ≤ 1
8n2

∑κ
j=1(bj − aj)2

∥∥D2
ju
∥∥.

Proof. (a) We proceed by induction. For κ = 1 the claim is clear from Sect. 3.1.2. As
induction step κ→ κ+ 1 we obtain∑

ι∈{0,...,n}κ+1

eι(x1, . . . , xκ+1) ≡
∑

(ι,ι′)∈{0,...,n}κ+1

eι(x1, . . . , xκ)eκ+1
ι′ (xκ+1)

≡
∑

ι∈{0,...,n}κ
eι(x1, . . . , xκ)

n∑
ι′=0

eκ+1
ι′ (xκ+1) ≡

∑
ι∈{0,...,n}κ

eι(x1, . . . , xκ) ≡ 1

on the product Ω× [aκ+1, bκ+1] from the induction hypothesis.
(b) results inductively using [6, p. 267].

The partition of unity from Lemma 3.4(a), the fact that the basis functions eι are
nonnegative and (3.5) imply

‖Pn‖ = 1 for all n ∈ N. (3.6)

Whence, also in the multivariate case the general solution ϕn has the properties stated
in Sect. 3.1.2. Furthermore, if Ft(u) ∈ C2(Ω)d holds, then Lemma 3.4(b) leads to

‖ent (u)‖
(1.4)
≤ 1

8n2

κ∑
j=1

(bj − aj)2
∥∥D2

j (Ft(u))
∥∥ for all n ∈ N, t ∈ I′.
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Finally, suppose Ω ⊂ R2 is a compact domain with polygonal boundary. Let Tn be
a subdivision of Ω into triangles K ⊂ Ω, constructed so that no vertex of a triangle lies
on the edge of another triangle, and that diamK ≤ 1

n holds for all n ∈ N. This means
that all triangles in Tn have a diameter ≤ 1

n . We equip the space of piecewise linear
continuous functions Xn := {u ∈ C1 : u|K is affine linear for all K ∈ Tn} with cor-
responding tent functions as basis. If Ft(u) ∈ C2(Ω)d holds, then there exists a C > 0
such that (cf. [2, p. 402, Thm. 10.3.8])

‖εnt (u)‖ ≤ C
n2 |Ft(u)|2 for all n ∈ N, t ∈ I′.

In both cases, Ω ⊂ Rκ is rectangular, or Ω ⊂ R2 has polygonal boundary, an analysis
as in Sect. 3.1.2 shows that (In)n∈N is C2-convergent of order 2 for general right-hand
sides (2.4). Yet, for IDEs (I0) with (2.6) one has C0-convergence of order 2.

3.2. Degenerate kernel methods and Hammerstein integrodifference equations

Due to their prominent role in applications [10, 7, 14, 9], an important special case
of general IDEs (I0) are Hammerstein integrodifference equations (HDEs for short)

ut+1 = Ft(ut), Ft(u) :=

∫
Ω

Kt(·, y)gt(y, u(y)) dy + ht (H0)

with inhomogeneities ht ∈ Cd, t ∈ I′. They fit into our framework of (I0) with

Gt(x, y, z) := z + ht(x) for all t ∈ I′ , x ∈ Ω, y, z ∈ Rd

(independent of the second variable) and kernel functions

ft : Ω2 × Rd → Rd, ft(x, y, z) := Kt(x, y)gt(y, z) for all t ∈ I′ (3.7)

having the continuous factors Kt : Ω2 → Rd×p (the kernel), gt : Ω × Rd → Rp (the
growth function). In particular, HDEs have right-hand sides of the form (2.6) with the
corresponding consequences. For all τ < t and u ∈ Cd we obtain:

• ϕ(t; τ, ·) : Cd → Cd is well-defined, continuous and uniformly continuous on
bounded sets by Prop. 2.1, while it is completely continuous by Cor. 2.2.

• If Dj
1Ks : Ω2 → Lj(Rκ,Rd×p), 0 ≤ j ≤ m, exist as continuous functions and

hs ∈ Cm(Ω)d, s ∈ I′, then Cor. 2.6 ensures ϕ(t; τ, u) ∈ Cm(Ω)d.

For growth functions gt of class C1
f , Thm. B.8 (applied to ft from (3.7)) yields that the

right-hand side Ft, t ∈ I′, is continuously differentiable and the variational eqn. (V0)
associated to an entire solution (φt)t∈I has the coefficients

DFt(φt)v =

∫
Ω

Kt(·, y)D2gt(y, φt(y))v(y) dy for all s ∈ I′, v ∈ Cd.

Note that the complete continuity of Ft from Prop. 2.1 implies thatDFt(φt) is compact
due to [13, p. 89, Prop. 6.5].
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While collocation methods apply to general right-hand sides (2.3) and in particular
to HDEs, we now discuss an approach being tailor-made for (H0). For linear integral
equations, degenerate kernel methods are discussed in [1, pp. 23, Chapt. 2], [5, pp. 65ff,
Sect. 4.2] and [11, pp. 195ff, Chapt. 11]. Our nonlinear set-up is a natural extension,
where we suppose that e1, . . . , edn : Ω → R are linearly independent, continuous
functions and the kernels Kt : Ω2 → Rd×p are approximated by degenerate kernels

Kn
t (x, y) :=

dn∑
j=1

ej(x)Bjt (y) for all x, y ∈ Ω (3.8)

with continuous coefficient matrices Bjt : Ω → Rd×p, 1 ≤ j ≤ dn. Given this, a
degenerate kernel method is a discretization (In) of the form

Fnt (u) :=

∫
Ω

Kn
t (·, y)gt(y, u(y)) dy + ht

=

dn∑
j=1

∫
Ω

Bjt (y)gt(y, u(y)) dyej + ht for all t ∈ I′. (3.9)

We point out that also (3.9) is merely a semi-discretization since it remains to evaluate
the dn Rd-valued integrals

∫
Ω
Bjt (y)gt(y, u(y)) dy in actual simulations.

Theorem 3.5 (degenerate kernel methods). Let m ∈ N0, n ∈ N. The general solution
ϕn(t; τ, ·) : Cd → Cd of degenerate kernel methods (3.9) is well-defined, completely
continuous and uniformly continuous on bounded sets for τ < t. Moreover, one has:

(a) If e1, . . . , edn ∈ Cm(Ω) and hs ∈ Cm(Ω)d holds for every s ∈ I′, then
ϕn(t; τ, u) ∈ Cm(Ω)d ∩ (ht−1 + span {e1, . . . , edn}

d
) for all τ < t, u ∈ Cd.

(b) If gs is of class Cmf , then ϕn(t; τ, ·) ∈ Cm(Cd, Cd).

Proof. Let s ∈ I′. For fixed n ∈ N and 1 ≤ j ≤ dn we abbreviate

φjs(x, y, z) := Bjs(y)gs(y, z)ej(x), F̃js(u) :=

∫
Ω

φjs(·, y, u(y)) dy : Ω→ Rd

and obtain Fns (u) =
∑dn
j=1 F̃

j
s(u) + hs from (3.9). Thus, it suffices to establish the

claimed properties for each summand F̃js. First, all φjs : Ω2×Rd → Rd are continuous
and therefore Thm. B.5 guarantees that F̃js : Cd → Cd is well-defined, completely
continuous and uniformly continuous on every bounded set. These properties transfer
to Fns , which moreover maps bounded subsets of Cd into bounded sets. Whence, the
composition ϕn(t; τ, ·), τ ≤ t, is well-defined, as well as completely continuous and
uniformly continuous on every bounded set.

(a) Given u ∈ Cd our assumptions imply that every function φjs is of class Cm1
and hence Thm. B.7 yields F̃js(u) ∈ Cm(Ω)d. The claim follows since Fns (u) is the
sum of Cm-functions and as above, also ϕn(t; τ, ·) is such a function. The remaining
inclusion is evident from (3.9).

(b) Our assumptions ensure that φjs is of class Cmf , therefore Thm. B.8 yields that
every F̃js is m-times continuously differentiable, and the same holds for the sum Fns .
Thus, the claim results from the chain rule [12, p. 337].
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Corollary 3.6. If for every r > 0, s ∈ I′ there is a measurable function λ̃s,r : Ω→ R+

with

`s(r) := sup
x∈Ω

∫
Ω

|Ks(x, y)| λ̃s,r(y) dy <∞, ls(r) :=

∫
Ω

λ̃s,r(y) dy <∞,

such that the Lipschitz condition

|gs(y, z)− gs(y, z̄)| ≤ λ̃s(y) |z − z̄| for all y ∈ Ω, z, z̄ ∈ B̄r(0)

holds, then B ⊆ B̄r(0) ⊂ Cd implies lipFns ≤ `s(r) + ls(r) ‖Kn
s −Ks‖.

Proof. Let r > 0 and s ∈ I′. Given u, ū ∈ B ⊆ B̄r(0) one has the estimate

|Fns (u)(x)− Fns (ū)(x)|
(3.9)
≤
∣∣∣∣∫

Ω

Ks(x, y) [gs(y, u(y))− gs(y, ū(y))] dy

∣∣∣∣
+

∣∣∣∣∫
Ω

[Kn
s (x, y)−Ks(x, y)] [gs(y, u(y))− gs(y, ū(y))] dy

∣∣∣∣
≤
∫

Ω

|Ks(x, y)| λ̃s,r(y) dy ‖u− ū‖+

∫
Ω

|Ks(x, y)−Kn
s (x, y)| λ̃s,r(y) dy ‖u− ū‖

≤ (`s(r) + ls(r) ‖Ks −Kn
s ‖) ‖u− ū‖ for all x ∈ Ω.

The assertion readily results by passing to the supremum over x ∈ Ω.

Corollary 3.7 (variational degenerate kernel equation). Let n ∈ N, s ∈ I′ and (φt)t∈I
be an entire solution to (In) given in (3.9). If gs is of class C1

f , then DFns (φs) is
compact with

DFns (φs)v =

dn∑
j=1

∫
Ω

Bjs(y)D2gs(y, φs(y))v(y) dyej for all v ∈ Cd.

Proof. Our assumptions guarantee that (x, y, z) 7→ Bjs(y)gs(y, z)ej(x), 1 ≤ j ≤ dn,
are continuous and of class C1

f . Therefore, it follows from Thm. B.8 that the functions
F̃js : Cd → Cd defined in the proof of Thm. 3.5 are of class C1 with derivative

DF̃js(u)v :=

∫
Ω

Bjs(y)D2gs(y, u(y))v(y) dyej(x) for all u, v ∈ Cd.

Then the assertion follows due to DFns (u) =
∑dn
j=1DF̃js(u).

Given a bounded subset B ⊂ Cd, u ∈ B, n ∈ N and t ∈ I′, estimates for the local
discretization error in degenerate kernel methods are based on the estimate

|εnt (u)(x)| ≤
∫

Ω

|[Kn
t (x, y)−Kt(x, y)] gt(y, u(y))| dy for all x ∈ Ω. (3.10)

Among various techniques to approximate kernelsKt viaKn
t , we exemplarily consider

piecewise linear approximation on Ω = [a, b], where e0, . . . , en : [a, b] → R+ denote
the hat functions introduced in Sect. 3.1.2:
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Example 3.8 (piecewise linear degenerate kernels). Suppose Bjt : [a, b] → Rd×p in
(3.8) are given by

Bjt (y) := Kt(ξj , y) for all 0 ≤ j ≤ n,

which corresponds to a piecewise linear interpolation in the first argument ofKt. Thus,
using [6, p. 241, p. 247] the interpolation errors

|Kn
t (x, y)−Kt(x, y)| ≤


ω( b−an ,Kt(·, y)), Kt(·, y) ∈ C[a, b]d×p,
b−a
4n ω( b−an , D1Kt(·, y)), Kt(·, y) ∈ C1[a, b]d×p,

(b−a)2

8n2 supx∈[a,b]

∣∣D2
1Kt(x, y)

∣∣ , Kt(·, y) ∈ C2[a, b]d×p

follow for all x, y ∈ [a, b]. Combining this with (3.10) implies that the local discretiza-
tion error fulfills (3.1) with convergence function

Γ0(ρ) := sup
t∈I′


∫ b
a
ω((b− a)ρ,Kt(·, y)) dy, Kt(·, y) ∈ C[a, b]d×p,

b−a
4 ρ

∫ b
a
ω((b− a)ρ,D1Kt(·, y)) dy, Kt(·, y) ∈ C1[a, b]d×p,

(b−a)2

8 ρ2
∫ b
a

supx∈[a,b]

∣∣D2
1Kt(x, y)

∣∣ dy, Kt(·, y) ∈ C2[a, b]d×p

and K(B) := supt∈I′ supu∈B supx∈Ω |gt(x, u(x))|. In particular, provided the above
expressions exist and Kt(·, y) is of class Cm, one has C0-convergence of order m.

Example 3.9 (bilinear degenerate kernels). Let Bjt : [a, b]→ Rd×p in (3.8) read as

Bjt (y) :=

n∑
j2=0

ej2(y)Kt(ξj , ξj2) for all 0 ≤ j ≤ n,

that is, Kt is approximated by piecewise linear functions over [a, b]2. For C2-kernels
Kt : [a, b]2 → Rd×p this leads to the error estimate

|Kn
t (x, y)−Kt(x, y)| (1.5)

=
d

max
j1=1

p∑
j2=1

|Kn
t (x, y)j1j2 −Kt(x, y)j1j2 |

≤ (b− a)2

8n2

d
max
j1=1

p∑
j2=1

2∑
l=1

∥∥D2
lKt(·)j1j2

∥∥ for all x, y ∈ [a, b],

if we apply [6, p. 267] to each matrix entry. Thanks to (3.10) this guarantees a local
discretization error satisfying (3.1), a convergence function

Γ0(ρ) :=
(b− a)2

8
ρ2 sup

t∈I′

d
max
j1=1

p∑
j2=1

2∑
l=1

∥∥D2
lKt(·)j1j2

∥∥ ,
K(B) := supt∈I′ supu∈B

∫ b
a
|gt(y, u(y))| dy and thus C0-convergence of order 2.
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4. Global discretization error

This section studies how the solutions to general IDEs (I0) and to their spatial dis-
cretizations (In)n∈N are related over time, provided adequate convergence assumptions
are satisfied. On finite time intervals, it is shown that convergent methods yield a global
discretization error with limit 0 as n → ∞. This situation changes on infinite inter-
vals, where typically exponential error growth occurs. For contractive equations (I0),
nevertheless, convergence does still hold.

Let ϕn denote the general solution of (In) and ϕ stand for the general solution
of (I0). The global discretization error

En(t; τ, u) := ϕ(t; τ, u)− ϕn(t; τ, u) for all τ ≤ t

describes the propagation of the local error as time evolves from τ to t > τ ; one
clearly has En(t + 1; t, u) = εnt (u) for all t ∈ I′. Our goal is to estimate the global
discretization error by the local discretization error εnt . Suitable estimates on its order
for concrete methods were derived above in Sect. 3.

For the upcoming results we assume that a discretization family (In)n∈N is Lip-
schitz, i.e. for s ∈ I′ and bounded sets B ⊂ Cd there exists a Ls(B) ≥ 0 such that

‖Fns (u)− Fns (ū)‖ ≤ Ls(B) ‖u− ū‖ for all n ∈ N, u, ū ∈ B.

Note that the constants Ls(B) are assumed to be uniform in the parameter n:

• For collocation methods, according to Cor. 3.2 this requires the projections Pn
to satisfy supn∈N ‖Pn‖ < ∞. On the one hand, when working with piece-
wise linear collocation, even ‖Pn‖ ≡ 1 holds, so that (I0) and all (In) have the
same Lipschitz constants. On the other hand, polynomial interpolation should be
avoided since the optimal growth of ‖Pn‖ is basically like lnn (see [1, p. 93]).

• In degenerate kernel methods we learn from Cor. 3.6 that the Lipschitz constants
of (H0) and (3.9) essentially differ by the norm ‖Kn

t −Kt‖. Boundedness, or
even convergence to 0 as n → ∞, in this quantity, yields a Lipschitzian dis-
cretization family.

Cors. 3.2 and 3.6 provide conditions under which a Lipschitz condition for Fs extends
to a collocation resp. degenerate kernel discretization Fns , s ∈ I′. Hence, for such
methods it suffices to assume a Lipschitz condition for (I0).

When dealing with nonautonomous difference equations (I0) it is helpful to intro-
duce the following terminology. A subset B ⊆ I × Cd is called nonautonomous set
with the t-fiber B(t) := {u ∈ Cd : (t, u) ∈ B} for every t ∈ I. We say B is bounded,
if every fiber B(t), t ∈ I, is bounded.

Theorem 4.1. Let m ∈ N0, τ, T ∈ I with τ ≤ T fixed, u ∈ Cd and B ⊆ I × Cmd
denote a nonautonomous set being bounded (in the Cm-topology). If a Lipschitzian
discretization familiy (In)n∈N is Cm-convergent and

ϕ(t; τ, u) ∈ B(t) for all τ ≤ t ≤ T, (4.1)
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then for every ρ > 0 there exists a N0 ∈ N such that ϕn(t; τ, u) ∈ Bρ(B(t)) and

‖En(t; τ, u)‖ ≤ Γ0( 1
n )

t−1∑
s=τ

K(B(s))

t−1∏
r=s+1

Lr
(
Bρ(B(r))

)
for all n ≥ N0 (4.2)

and τ ≤ t ≤ T .

Remark 4.2. For autonomous IDEs (I0) and B = Z× B with some Cm-bounded set
B ⊂ Cmd , the constants in (4.2) become uniform in s ∈ I′. Then the estimate (4.2) for
the global discretization error simplifies to

‖En(t; τ, u)‖ ≤ K(B)Γ0( 1
n )
L(Bρ(B))t−τ − 1

L(Bρ(B))− 1
for all τ ≤ t ≤ T.

In the typical case L(Bρ(B)) > 1 this means that for fixed n ∈ N the global error
En(t; τ, u) is exponentially growing as t → ∞. For this reason such “classical” error
estimates are useless when studying asymptotic properties of (I0) and relating them to
(In). Yet, for a finite interval τ ≤ t ≤ T one has convergence to 0 as n→∞.

Proof. Let ρ > 0 and (τ, u) ∈ B be given; abbreviate ϕ(t) := ϕ(t; τ, u). By induction
over t ≥ τ we show the existence of a N0 = N0(T ) ∈ N such that (4.2), as well as

ϕn(t; τ, u) ∈ Bρ(B(t)) for all τ ≤ t ≤ T, n ≥ N0 (4.3)

hold. For t = τ this is trivially true. Suppose that (4.3), (4.2) are satisfied for some
fixed t < T , set xt := ‖En(t; τ, u)‖, and we obtain

xt+1

(4.1)
≤ ‖Fnt (ϕn(t))− Fnt (ϕ(t))‖+ ‖εnt (ϕ(t)︸︷︷︸

∈B(t)

)‖

(3.1)
≤ ‖Fnt (ϕn(t; τ, u)︸ ︷︷ ︸

(4.3)
∈ Bρ(B(t))

)− Fnt ( ϕ(t)︸︷︷︸
(4.1)
∈ B(t)

)‖+K(B(t))Γ0( 1
n )

≤ Lt
(
Bρ(B(t))

)
xt +K(B(t))Γ0( 1

n )

(4.2)
≤ Lt

(
Bρ(B(t))

)
Γ0( 1

n )

t−1∑
s=τ

K(B(s))

t−1∏
r=s+1

Lr
(
Bρ(B(r))

)
+K(B(t))Γ0( 1

n )

= Γ0( 1
n )

t∑
s=τ

K(B(s))

t∏
r=s+1

Lr
(
Bρ(B(r))

)
.

Due to Γ0 ∈ N, for a sufficiently large N0 it holds ‖En(t+ 1; τ, u)‖ < ρ and hence
the desired inclusion ϕn(t+ 1; τ, u) ∈ Bρ(B(t+ 1)). This concludes the proof.

Nevertheless, IDEs (I0) having an ambient contraction property allow uniform es-
timates on the global discretization error. Here we retreat to C0-convergence:
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Corollary 4.3. Let τ ∈ I, u ∈ Cd. Suppose that there exist reals K0 ≥ 1, α ∈ (0, 1)
and N̄ ∈ N with

t−1∏
r=s

lipFr ≤ K0α
t−s,

t−1∏
r=s

lipFnr ≤ K0α
t−s for all s ≤ t, n ≥ N̄ (4.4)

and that (I0) has a bounded forward solution. If (In)n∈N is C0-convergent, then there
exist N0 ≥ N̄ and K̃ ≥ 0 with ‖En(t; τ, u)‖ ≤ K̃

1−αΓ0( 1
n ) for all τ ≤ t, n ≥ N0.

It follows from Cor. 3.2 and (3.6) that the second estimate in (4.4) trivially holds
for piecewise linear collocation methods. When using degenerate kernels, then Cor. 3.6
allows to conclude the second estimate in (4.4) from the first one, provided ‖Kn

t −Kt‖
is sufficiently small, which might hold for a sufficiently large N̄ .

Proof. Given an initial time τ ∈ I, let (φ∗t )τ≤t denote a bounded forward solution to
(I0), i.e. there exists a R1 ≥ 0 such that ‖φ∗t ‖ ≤ R1 holds for all τ ≤ t. If t1 ∈ N0 is
chosen so large that K0α

t ≤ 1 for all t1 ≤ t, then

‖ϕ(t)‖ ≤ ‖ϕ(t)− φ∗t ‖+ ‖φ∗t ‖ = ‖ϕ(t)− ϕ(t; τ, φ∗τ )‖+ ‖φ∗t ‖

≤

(
t−1∏
r=τ

lipFr

)
‖u− φ∗τ‖+R1

(4.4)
≤ K0α

t−τ ‖u− φ∗τ‖+R1

≤ ‖u− φ∗τ‖+R1 for all t1 ≤ t− τ.

This shows ‖ϕ(t)‖ ≤ max
{
R1 + ‖u− φ∗τ‖ ,maxτ+t1−1

r=τ ‖ϕ(r)‖
}

=: R for all τ ≤ t.
Therefore, the assumptions of Thm. 4.1 hold with B := I×BR(0) and arbitrary times
T ≥ τ . Whence, setting K̃ := K0K(BR(0)) there exists an N0 ≥ N̄ such that

‖En(t; τ, u)‖
(4.2)
≤ Γ0( 1

n )

t−1∑
s=τ

K(BR(0))

t−1∏
r=s+1

lipFnr

(4.4)
≤ K̃Γ0( 1

n )

t−τ−1∑
s=0

αs ≤
K̃Γ0( 1

n )

1− α

holds for all τ ≤ t, n ≥ N0.

We next provide an estimate for the global discretization error in the Cm-topology.
To keep the technical effort at a reasonable level, let us restrict to Hammerstein inte-
grodifference eqns. (H0) and their degenerate kernel discretizations:

Corollary 4.4 (Hammerstein equations). Let ρ > 0, m ∈ N0 and choose N0 ∈ N from
Thm. 4.1. Suppose a Hammerstein eqn. (H0) fulfills for τ ≤ s < T , 0 ≤ j ≤ m that

(i) Dj
1Ks : Ω× Ω→ Lj(Rκ,Rd×p) exist as continuous functions, hs ∈ Cm(Ω)d,

(ii) for all r > 0 there exists a measurable function λ̃s,r : Ω→ R+ such that

|gs(y, z)− gs(y, z̄)| ≤ λ̃s,r(y) |z − z̄| for all y ∈ Ω, z, z̄ ∈ Br(0)

and `js(r) := supn∈N supy∈Ω

∫
Ω

∣∣∣Dj
1K

n
s (x, y)

∣∣∣ λ̃s,r(y) dy <∞.
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If the functions e1, . . . , edn in a C0-convergent degenerate kernel discretization (3.9)
are of class Cm and there exists a constant K̄1 ≥ 0 such that

m
max
j=0

sup
x∈Ω

∫
Ω

∣∣∣Dj
1K

n
t (x, y)−Dj

1Kt(x, y)
∣∣∣ dy ≤ K̄1Γ0( 1

n ) for all n ≥ N0, (4.5)

then En(t; τ, u) ∈ Cm(Ω,Rd) with the error estimate

‖En(t; τ, u)‖m ≤Γ0( 1
n )

m
max
j=0

`jt (R+ ρ)

t−1∑
s=τ

K(B(s))

t−1∏
r=s+1

Lr
(
Bρ(B(r))

)
+ Γ0( 1

n )K̄1 sup
y∈Ω,z∈B(t)

|gt(y, z)| for all n ≥ N0

and τ ≤ t ≤ T hold.

Proof. Let τ ∈ I, τ ≤ t and u, ū ∈ Cd. In order to apply Thm. 4.1 we first show that
(In)n∈N is Lipschitz. If we set r := max {‖u‖ , ‖ū‖}, then

|Fns (u)(x)− Fns (ū)(x)| (3.9)
=

∣∣∣∣∫
Ω

Kn
s (x, y) [gs(y, u(y))− gs(y, ū(y))] dy

∣∣∣∣
≤
∫

Ω

|Kn
s (x, y)| |gs(y, u(y))− gs(y, ū(y))| dy

≤
∫

Ω

|Kn
s (x, y)| λ̃s,r(y) dy ‖u− ū‖ ≤ `0s(r) ‖u− ū‖

and passing to the supremum over x ∈ Ω yields ‖Fns (u)− Fns (ū)‖ ≤ `0s(r) ‖u− ū‖
for s ∈ I′. Hence, the discretization is Lipschitz. From Thm. B.7 and (3.9) we obtain

ϕ(t+ 1; τ, u)(j)(x) ≡
∫

Ω

Dj
1Kt(x, y)gt(y, ϕ(t; τ, u)(y)) dy + h

(j)
t (x),

ϕn(t+ 1; τ, u)(j)(x) ≡
∫

Ω

Dj
1K

n
t (x, y)gt(y, ϕn(t; τ, u)(y)) dy + h

(j)
t (x)

on Ω for 0 ≤ j ≤ m. With the nonautonomous set B from Thm. 4.1 we choose
some R > 0 so large that the inclusion B(t) ⊆ B̄R(0) holds for τ ≤ t ≤ T . Hence,
ϕn(t; τ, u) ∈ B̄R+ρ(0) and as above, this yields∣∣∣ϕn(t+ 1; τ, u)(j)(x)− ϕ(t+ 1; τ, u)(j)(x)

∣∣∣
≤
∣∣∣∣∫

Ω

Dj
1K

n
t (x, y) [gt(y, ϕn(t; τ, u)(y))− gt(y, ϕ(t; τ, u)(y))] dy

∣∣∣∣
+

∣∣∣∣∫
Ω

[
Dj

1K
n
t (x, y)−Dj

1Kt(x, y)
]
gt(y, ϕ(t; τ, u)(y)) dy

∣∣∣∣
≤ `jt (R+ ρ) ‖ϕn(t; τ, u)− ϕ(t; τ, u)‖

+

∫
Ω

∣∣∣Dj
1K

n
t (x, y)−Dj

1Kt(x, y)
∣∣∣ dy sup

y∈Ω,z∈B(t)

|gt(y, z)|
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(4.5)
≤ `jt (R+ ρ) ‖En(t; τ, u)‖+ K̄1Γ0( 1

n ) sup
y∈Ω,z∈B(t)

|gt(y, z)| for all n ≥ N0

and 0 ≤ j ≤ m. Then (4.2) implies the claim.

We conclude with a local variant, but also a tightening of Thm. 4.1:

Proposition 4.5. Let τ, T ∈ I with τ ≤ T and (φ∗t )τ≤t be a solution of (I0). Suppose
there exist a ρ0 > 0 and functions Γ0

0,Γ
1
0, γ0 ∈ N such that for all τ ≤ s ≤ T there

exist L∗s ≥ 0 fulfilling

‖Fns (φ∗s)− Fs(φ
∗
s)‖ ≤ Γ0

0( 1
n ), ‖Fns (u)− Fns (ū)‖ ≤ L∗s ‖u− ū‖ (4.6)

for all u, ū ∈ Bρ0(φ∗s) and n ∈ N. Then there is a N0 ∈ N so that for n ≥ N0, times
τ ≤ t ≤ T and initial values u ∈ B ρ0

2L
(φ∗τ ) one has

(a) ϕn(t; τ, u) ∈ Bρ0(φ∗t ) and

‖ϕn(t; τ, u)− φ∗t ‖ ≤

(
t−1∏
r=τ

L∗r

)
‖u− φ∗τ‖+ Γ0

0( 1
n )

t−1∑
s=τ

t−1∏
r=s+1

L∗r ,

(b) if additionally for all τ ≤ s ≤ T , n ∈ N the maps Fs,Fns are of class C1 with

‖DFns (u)−DFns (φ∗s)‖ ≤ γ0(‖u− φ∗s‖), (4.7)

‖DFns (φ∗s)−DFs(φ
∗
s)‖ ≤ Γ1

0( 1
n ) (4.8)

for all u ∈ Bρ0(φ∗s), then

‖D3ϕn(t; τ, u)−D3ϕ(t; τ, φ∗τ )‖

≤
t−1∑
s=τ

`s
[
γ0(‖ϕn(s; τ, u)− φ∗s‖) + Γ1

0( 1
n )
] t−1∏
r=s+1

L∗r , (4.9)

where we abbreviate L := maxTt=τ
∏t−1
r=τ L

∗
r and `t :=

∥∥∥∏t−1
s=τ DFs(φ

∗
s)
∥∥∥.

Proof. Let ϕn(t) := ϕn(t; τ, u), xt := ‖ϕn(t)− φ∗t ‖ and we proceed by induction:
(a) For t = τ the claim obviously holds true. As induction step t→ t+ 1 one has

xt+1 ≤ ‖Fnt (ϕn(t))− Fnt (φ∗t )‖+ ‖Fnt (φ∗t )− Ft(φ
∗
t )‖

(4.6)
≤ L∗txt + Γ0

0( 1
n ),

since ϕn(t) ∈ Bρ0(φ∗t ) holds by induction hypothesis, which, in turn, also yields

xt+1 ≤

(
t∏

r=τ

L∗r

)
‖u− φ∗τ‖+ Γ0

0( 1
n )

t∑
s=τ

t∏
r=s+1

L∗r <
ρ0
2 + ρ0

2 = ρ0

for all τ ≤ t < T , provided u ∈ Bρ0/(2L)(φ
∗
τ ) and one chooses N0 ∈ N so large that

the second term in the above sum is bounded above by ρ0
2 .
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(b) First of all, due to (2.1) the partial derivatives D3ϕ,D3ϕn exist, because ϕ,ϕn
are compositions ofC1-mappings. It remains to perform the induction step in the proof
of the inequality (4.9). Let us write yt := ‖D3ϕn(t; τ, u)−D3ϕ(t; τ, φ∗τ )‖. We first
observe that the Lipschitz condition (4.6) implies ‖DFnt (u)‖ ≤ L∗t for all u ∈ Bρ0(φ∗t )
(see [15, p. 363, Prop. C.1.1]). Thus,

yt+1

(2.2)
≤

∥∥∥∥∥DFnt (ϕn(t))

t−1∏
s=τ

DFns (ϕn(s))−DFnt (ϕn(t))

t−1∏
s=τ

DFs(φ
∗
s)

∥∥∥∥∥
+

∥∥∥∥∥DFnt (ϕn(t))

t−1∏
s=τ

DFs(φ
∗
s)−DFt(φ

∗
t )

t−1∏
s=τ

DFs(φ
∗
s)

∥∥∥∥∥
(2.2)
≤ ‖DFnt (ϕn(t))‖ yt + ‖DFnt (ϕn(t))−DFt(φ

∗
t )‖ `t

and the inclusion ϕn(t) ∈ Bρ0(φ∗t ) established above yields

yt+1 ≤ L∗t yt + ‖DFnt (ϕn(t))−DFt(φ
∗
t )‖ `t

≤ L∗t yt + ‖DFnt (ϕn(t))−DFnt (φ∗t )‖ `t + ‖DFnt (φ∗t )−DFt(φ
∗
t )‖ `t

(4.7)
≤ L∗t yt + γ0(‖ϕn(t)− φ∗t ‖)`t + ‖DFnt (φ∗t )−DFt(φ

∗
t )‖ `t

(4.8)
≤ L∗t yt +

(
γ0(‖ϕn(t)− φ∗t ‖) + Γ1

0( 1
n )
)
`t.

Having this at hand, the induction hypothesis guarantees the desired estimate

yt+1 ≤
t∑

s=τ

`s
[
γ0(‖ϕn(s)− φ∗s‖) + Γ1

0( 1
n )
] t∏
r=s+1

L∗r

for all τ ≤ t < T and initial values u ∈ Bρ0/(2L)(φ
∗
τ ).

5. Numerical simulations

Let us close by illuminating some results using concrete IDEs and their discretiza-
tion over one- and two-dimensional domains. Throughout, we work with piecewise
linear approximations. In order to obtain full discretizations preserving a quadratic er-
ror order, the following simulations replace the remaining integrals by the trapezoidal
quadrature rule (see [4, p. 368]). For Ω = [a, b] this means∫ b

a

u(y) dy =
b− a
2n

(
u(η0) + 2

n−1∑
j=1

u(ηj) + u(ηn)
)
− (b− a)3

12n2
u′′(ξ∗)

with nodes ηj := a+j b−an , 0 ≤ j ≤ n, n ∈ N and some intermediate value ξ∗ ∈ [a, b].
First, we approximate scalar, nonlinear Urysohn IDEs

ut+1(x) = Gt

(
x, ut(x),

∫ b

a

ft(x, y, ut(y)) dy

)
for all x ∈ [a, b]
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by piecewise linear collocation. With the hat functions e0, . . . , en : [a, b]→ R defined
in Sect. 3.1.2, this yields the semi-discretization

ut+1(x) =

n∑
i=0

Gt

(
ηi, ut(ηi),

∫ b

a

ft(ηi, y, ut(y)) dy

)
ei(x) for all x ∈ [a, b]

in C[a, b]. If we evaluate these functions at x = ηi, replace the integral by the trape-
zoidal rule and set υt(i) := ut(ηi), one arrives at the explicit recursion1

υt+1(i) = Gt

(
ηi, υt(i),

b− a
2n

(
ft (ηi, η0, υt(0)) + 2

n−1∑
j=1

ft (ηi, ηj , υt(j))

+ ft (ηi, ηn, υt(n))

))
for all 0 ≤ i ≤ n (5.1)

in Rn+1, which is our desired full discretization of (I0).
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Figure 1: Errors in Exam. 5.1 as a function of the accuracy n (left) and time t (right)

Example 5.1. Let Ω = [−π, π] and α ∈ R. Consider the scalar, autonomous IDE

ut+1(x) = sinx+ α
ut(x)2 − π2 − x2

2
+ α

∫ π

−π
|x− y|ut(y)2 dy (5.2)

for all x ∈ [−π, π], with the time-constant solution φ∗(x) = sinx being independent
of the parameter α. A full discretization is of the form (5.1) with integration bounds
a = −π, b = π and

ft(x, y, z) := |x− y| z2, Gt(x, u, v) := sinx+ αu
2−π2−x2

2 + αv.

1The reader might realize that this is the Nyström discretization [1, 5] of (I0) based on the trapezoidal
rule. We will observe the same phenomenon for the full discretizations in our subsequent examples.
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Figure 2: Error in Exam. 5.2 for t ∈ {10, 15, 25}
as a function of the accuracy n.

Applying the IDE (5.2) to the initial function u0(x) := φ∗(x) yields a fixed point, i.e.
ϕ(t; 0, u0) = φ∗ for all t ≥ 0. Due to discretization errors, this changes when working
with approximations (5.1): Fig. 1 demonstrates for α = 0.15 how the error

errn(t) =
1

n

n∑
j=0

|ϕn(t; 0, u0)(ηj)− φ∗(ηj)|

develops as function of the accuracy n (left) and in time t (right). In particular, err1000

grows exponentially with rate ≈ 1.88; an exponential growth of the global discretiza-
tion error in t is predicted by Thm. 4.1. Moreover, keeping t = 15 fixed, the global
error preserves the order of the method. The quadratic decay of errn(15) ensured in
Sect. 3.1.2 is reflected by the numerical value ln err500(15)−ln err250(15)

ln 500−ln 250 ≈ −2.07.

Second, the next example is defined on a rectangle Ω = [a1, b1] × [a2, b2] and for
ηji := aj + i

bj−aj
n , j = 1, 2, the trapezoidal cubature rule becomes (see [4, p. 411])∫ b1

a1

∫ b2

a2

u =
(b2 − a2)(b1 − a1)

4n2

(
u(η1

0 , η
2
0) + u(η1

0 , η
2
n) + u(η1

n, η
2
0) + u(η1

n, η
2
n)

+ 2

n−1∑
j1=1

(
u(η1

j1 , η
2
0) + u(η1

j1 , η
2
n)
)

+ 2

n−1∑
j2=1

(
u(η1

0 , η
2
j2) + u(η1

n, η
2
j2)
)

+ 4

n−1∑
j1=1

n−1∑
j2=1

u(η1
j1 , η

2
j2)
)

+O( 1
n2 ).

Example 5.2. Let Ω = [0, 1]2, α ∈ R and h(x) :=
√
x1x2 − π2

12α(x1 + x2). We
consider the scalar, autonomous and inhomogeneous Urysohn IDE

ut+1(x) = α

∫ 1

0

∫ 1

0

x1 + x2

1 + ut(y)2
dy1 dy2 + h(x) =: F(ut)(x) (5.3)

for all x = (x1, x2) ∈ Ω, having the constant solution φ∗(x) =
√
x1x2. In order to

derive a Lipschitz estimate for the right-hand side of (5.3), we obtain∣∣∣ 1
1+z2 −

1
1+z̄2

∣∣∣ ≤ 3
√

3
8 |z − z̄| for all z, z̄ ∈ R
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from the mean value theorem, consequently for every u, ū ∈ C(Ω) it results

|F(u)(x)− F(ū)(x)|
(5.3)
≤ |α|

∫ 1

0

∫ 1

0

3
√

3(x1+x2)
8 dy1 dy2 ‖u− ū‖

≤ |α| 3
√

3
8 max

x1,x2∈[0,1]
(x1 + x2) ‖u− ū‖ = |α| 3

√
3

4 ‖u− ū‖

and thus lipF ≤ |α| 3
√

3
4 . For |α| ≤ 4

√
3

9 the IDE (5.3) is contractive. Combining
(3.6) with Cor. 3.2 implies that also the semi-discretizations (In) via piecewise linear
collocation are contractions (with the same constant) and Cor. 4.3 applies. Choosing a
fixed parameter α = 0.75 the error

errn(t) =
1

n2

n∑
j1=0

n∑
j2=0

∣∣ϕn(t; 0, u0)(η1
j1 , η

2
j2)− φ∗(η1

j1 , η
2
j2)
∣∣

for times t ∈ {10, 15, 25} as a function over the accuracy n is illustrated in Fig. 2. It
confirms that the error decays quadratically with n.

Third, we finally tackle a scalar, homogeneous Hammerstein IDE

ut+1 =

∫ b

a

k(·, y)gt(y, ut(y)) dy,

whose kernel function k : [a, b]2 → R is approximated by piecewise linear degenerate
kernels kn(x, y) :=

∑n
i1=0

∑n
i2=0 k(ηi1 , ηi2)ei1(x)ei2(y). This yields

ut+1 =

n∑
i1=0

n∑
i2=0

k(ηi1 , ηi2)

∫ b

a

gt(y, ut(y))ei2(y) dyei1

as semi-discretization. Approximating the remaining integrals with the trapezoidal rule
leads to a recursion in Rn+1 given by

υt+1(i) =
b− a
n

(
k(ηi, η0)gt(η0, υt(0)) + 2

n−1∑
j=1

k(ηi, ηj)gt(ηj , υt(j))

+ k(ηi, ηn)gt(ηn, υt(n))

)
for all 0 ≤ i ≤ n.

Example 5.3 (Beverton-Holt equation). Let Ω = [−1, 1]. We consider the IDE

ut+1(x) =

∫ 1

−1

k(x, y)
at(y) |ut(y)|
1 + |ut(y)|

dy (5.4)

with the Laplace kernel k(x, y) := α
2 e
−α|x−y|, a Beverton-Holt-like growth function

gt(y, z) := at(y)|z|
1+|z| having a 2-periodic, space-dependent growth rate

at(y) := 5

{
1− cos y, t is odd,
1 + sin y, t is even.
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If the dispersal parameter α > 0 is increased, then a 2-periodic solution (φ∗t )t∈Z to (5.4)
bifurcates transcritically from the trivial solution, due to [7] it attracts every nonzero
initial function (see Fig. 3). For α = 20 we illustrate the convergence to this attractive
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Figure 3: Attractive 2-periodic orbit of (5.4) depending on the dispersal parameter α ∈ [0, 20] for even
instants (red, left) and odd instants (green, right)

2-periodic orbit in Fig. 4, which given a rough initial function u0, also illustrates the
smoothing property of (5.4) guaranteed by Cor. 2.6. We semi-discretize (5.4) using
piecewise linear degenerate kernel approximation and the trapezoidal rule to arrive at
full discretizations. In the following, the attractive 2-periodic orbit φ∗ is understood as
its approximation for n = 2000. The L1-error

err(n) =
1

2n

n∑
j=0

(|φn0 (ηj)− φ∗0(ηj)|+ |φn1 (ηj)− φ∗1(ηj)|)

between φ∗ and its discrete counterpart φn as function of the discretization parameter
n is pictured in Fig. 5 (right). For fixed values n ∈ {250, 500, 1000} the temporal evo-
lution of the global discretization error is depicted in Fig. 5 (left). The errors become
stationary for larger values of t, since the solution to (In) converge to a fixed point
different from the equilibrium of (H0), that is (5.4).
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Figure 4: Iterates ut = ϕ(t; 0, u0) for t ≥ 0 result-
ing from a (rough) initial function u0 (dotted curve)
and graphs of the globally attractive 2-periodic orbit
(φ∗t )t∈Z (green and red) for α = 20
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A. A Grönwall lemma

The following elementary Grönwall-type lemma is useful in error estimates:

Lemma A.1. Let (λt)t∈I′ , (βt)t∈I′ be sequences in R+ resp. R and τ ∈ I. If a real
sequence (xt)t∈I satisfies xt+1 ≤ λtxt + βt for every t ∈ I′, τ ≤ t, then

xt ≤ xτ
t−1∏
r=τ

λr +

t−1∑
s=τ

βs

t−1∏
r=s+1

λr for all τ ≤ t, τ, t ∈ I.

Proof. We proceed by induction. For t = τ the above inequality becomes xτ ≤ xτ
due to the usual conventions. In the induction step t→ t+ 1 one has

xt+1 ≤ λtxt + βt ≤ λtxτ
t−1∏
r=τ

λr + λt

t−1∑
s=τ

βs

t−1∏
r=s+1

λr + βt

= xτ

t∏
r=τ

λr +

t∑
s=τ

βs

t∏
r=s+1

λr

and consequently the claim follows.

B. Nonlinear operators on C(Ω)d

Let Ω ⊂ Rκ be nonempty, compact without isolated points and suppose (Y, |·|) is
a finite-dimensional normed space; we abbreviate Cd := C(Ω,Rd).

Given m ∈ N0, a function φ : Ω× Ω× Rd → Y is called of class

• Cm1 , if the partial derivatives Dj
1φ : Ω2 × Rd → Lj(Rκ, Y )

exist as continuous functions for all 0 ≤ j ≤ m. Furthermore, φ is of class

• Cmf (f for final variable), if the partial derivatives Dj
3φ : Ω2×Rd → Lj(Rd, Y )

exist as continuous functions and that for all ε > 0, x, y ∈ Ω there exists a δ > 0
such that for every 1 ≤ j ≤ m one has the implication

|z1 − z2| < δ ⇒
∣∣∣Dj

3φ(x, y, z1)−Dj
3φ(x, y, z2)

∣∣∣ < ε for all z1, z2 ∈ Rd.
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B.1. Substitution operators
For a continuous function G : Ω× Rd → Y we define the substitution operator

G(u)(x) := G(x, u(x)) for all x ∈ Ω, u ∈ Cd (B.1)

and derive the following properties:

Theorem B.1. The operator G : Cd → C(Ω, Y ) is well-defined, bounded, continuous
and uniformly continuous on every bounded subset of Cd.

Throughout, a mapping is called bounded, if it maps bounded sets to bounded sets.

Proof. Since continuity is preserved under composition, G(u) ∈ C(Ω, Y ) for u ∈ Cd
holds. The continuity and boundedness of G result from the definition of the sup-norm
and the uniform continuity of G on compact subsets of Ω× Rd. We vicariously verify
the uniform continuity on any bounded B ⊂ Cd. Then there exists a R > 0 with
‖u‖ ≤ R for u ∈ B. Since G is uniformly continuous on the compact set Ω× B̄R(0),
for every ε > 0 there is a δ > 0 such that |x1 − x2| < δ, |z1 − z2| < δ implies the
inequality |G(x1, z1)−G(x2, z2)| < ε

2 . For all u1, u2 ∈ B with ‖u1 − u2‖ < δ this
yields |G(x, u1(x))−G(x, u2(x))| < ε

2 for x ∈ Ω. Finally ‖G(u1)− G(u2)‖ < ε
holds due to (B.1), by passing to the maximum over x ∈ Ω. That is, the substitution
operator G is uniformly continuous on B.

We say that a mapping G : Ω× Rd → Y is uniformly Lipschitz, if for every r > 0
there exists a real λ̃(r) ≥ 0 such that

|G(x, z)−G(x, z̄)| ≤ λ̃(r) |z − z̄| for all x ∈ Ω, z, z̄ ∈ B̄r(0).

Corollary B.2. If G : Ω × Rd → Y is uniformly Lipschitz, then G is Lipschitz; more
precisely, B ⊆ B̄r(0) ⊆ Cd implies lipG|B ≤ λ̃(r) for all r > 0.

Proof. Given r > 0, choose continuous functions u, ū ∈ B̄r(0). This leads to

|G(u)(x)− G(ū)(x)| (B.1)
= |G(x, u(x))−G(x, ū(x))| ≤ λ̃(r) ‖u− ū‖ for all x ∈ Ω

and passing to the maximum over Ω guarantees ‖G(u)− G(ū)‖ ≤ λ̃(r) ‖u− ū‖.

Theorem B.3 (differentiability of G(u)). Let m ∈ N. If u and G are of class Cm, then
G(u) ∈ Cm(Ω, Y ) holds with the first order derivative

G(u)′(x) = D1G(x, u(x)) +D2G(x, u(x))u′(x) for all x ∈ Ω.

Proof. This immediately follows from the basic chain rule, e.g. [12, p. 337].

Theorem B.4 (differentiability of G). Let m ∈ N0. If G is of class Cmf , then G is
m-times continuously differentiable with derivatives

(DjG(u)h1 · · ·hj)(x) = Dj
2G(x, u(x))h1(x) · · ·hj(x) for all 0 ≤ j ≤ m,

x ∈ Ω and functions u, h1, . . . , hj ∈ Cd.
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Proof. Let u, h ∈ Cd be fixed. In case m = 0 the claim results from Thm. B.1.
(I) For every 1 ≤ j ≤ m we consider the mappings rj : Cd → R+,

rj(h) := sup
x∈Ω

sup
ϑ∈[0,1]

∣∣∣Dj
2G(x, u(x) + ϑh(x))−Dj

2G(x, u(x))
∣∣∣

and show limh→0 rj(h) = 0. Given ε > 0, x0 ∈ Ω, 1 ≤ j ≤ m, our assumption im-

plies that there exists a δ(x0) > 0 so that
∣∣∣Dj

2G(x0, z1)−Dj
2G(x0, z2)

∣∣∣ < ε
2 holds for

z1, z2 ∈ Rd with |z1 − z2| < δ(x0). Since
{
Bδ(x)(x) : x ∈ Ω

}
is an open cover of the

compact set Ω, there exist finitely many x1, . . . , xn ∈ Ω with Ω ⊆
⋃n
i=1Bδ(xi)(xi).

We define δ0 := min {δ(xi) : 1 ≤ i ≤ n} > 0 and for every x ∈ Ω one finds an index
ι ∈ {1, . . . , n} such that x ∈ Bδ(xι)(xι) holds. Hence, |z1 − z2| < δ0 ≤ δ(xι) leads

to
∣∣∣Dj

2G(x, z1)−Dj
2G(x, z2)

∣∣∣ < ε
2 for all x ∈ Ω. Thus, in case ‖h‖ < δ0 it is∣∣∣Dj

2G(x, u(x) + ϑh(x))−Dj
2G(x, u(x))

∣∣∣ < ε
2 for all ϑ ∈ [0, 1], x ∈ Ω.

By passing over to the least upper bound for ϑ ∈ [0, 1] and then over x ∈ Ω, this
implies the desired inequality |rj(h)| < ε, whenever h ∈ Bδ0(0) holds.

(II) For 0 ≤ j < m we define the mappings

Fj : Ω× Cd → Lj(Rd, Y ), Fj(x, u) := Dj
2G(x, u(x)),

F ′j : Ω× C2(Ω)d → Lj(Rd, Y ), F ′j(x, u, h) := Dj+1
2 G(x, u(x))h(x).

It is easy to see that h 7→ F ′j(·, u, h) are linear and bounded. Given this, for all x ∈ Ω
we obtain from the mean value theorem (cf. [12, p. 341, Thm. 4.2]) that∣∣Fj(x, u+ h)− Fj(x, u)− F ′j(x, u, h)

∣∣ (B.2)

=
∣∣∣Dj

2G(x, u(x) + h(x))−Dj
2G(x, u(x))−Dj+1

2 G(x, u(x))h(x)
∣∣∣

=

∣∣∣∣∫ 1

0

[
Dj+1

2 G(x, u(x) + ϑh(x))−Dj+1
2 G(x, u(x))

]
dϑh(x)

∣∣∣∣
≤ sup
ϑ∈[0,1]

∣∣∣Dj+1
2 G(x, u(x) + ϑh(x))−Dj+1

2 G(x, u(x))
∣∣∣ ‖h‖ ≤ rj+1(h) ‖h‖ .

(III) Passing over to the supremum over all x ∈ Ω in the inequality

|G(u+ h)(x)− G(u)(x)− F ′0(x, u, h)|
(B.1)
= |F0(x, u+ h)− F0(x, u)− F ′0(x, u, h)|

(B.2)
≤ r1(h) ‖h‖

implies ‖G(u+ h)− G(u)− F ′0(·, u, h)‖ ≤ r1(h) ‖h‖. Hence, due to the limit rela-
tion limh→0 r1(h) = 0 and its uniqueness, one obtains the explicit Fréchet derivative
DG(u)h = F ′0(·, u, h). It is standard to show that u 7→ DG(u) is continuous (see the
proof of Thm. B.1), i.e. G : Cd → C(Ω, Y ) is of class C1.

(IV) We proceed by mathematical induction and assume G is of class Cj , j < m.
It follows for all x ∈ Ω that
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∣∣DjG(u+ h)(x)−DjG(u)(x)− F ′j(x, u, h)
∣∣

=
∣∣Fj(x, u+ h)− Fj(x, u)− F ′j(x, u, h)

∣∣ (B.2)
≤ rj+1(h) ‖h‖ .

Hence, DjG is differentiable in u with the derivative h 7→ F ′j(·, u, h). As in the proof
of Thm. B.1 one establishes continuity of Dj+1G.

B.2. Urysohn integral operators

Let us study Urysohn integral operators

U(u) :=

∫
Ω

φ(·, y, u(y)) dy for all u ∈ Cd (B.3)

associated to a continuous kernel function φ : Ω2×Rd → Y . Our subsequent measure-
theoretical terminology always refers to the Lebesgue measure λκ on Rκ.

Theorem B.5. The operator U : Cd → C(Ω, Y ) is well-defined, completely continu-
ous and uniformly continuous on each bounded subset of Cd.

Proof. The special case Y = Rd is shown in [13, p. 166, Prop. 3.2]. The reader might
verify that our situation of a general finite-dimensional normed space Y requires no
additional arguments yet.

Corollary B.6. If for every r > 0 there exists a function λr : Ω2 → R+ so that λr(x, ·)
is measurable on Ω with `(r) := supx∈Ω

∫
Ω
λr(x, y) dy <∞ and

|φ(x, y, z)− φ(x, y, z̄)| ≤ λr(x, y) |z − z̄| for all x, y ∈ Ω, z, z̄ ∈ B̄r(0),

then U is Lipschitz, i.e. B ⊆ B̄r(0) ⊂ Cd implies lipU|B ≤ `(r).

Proof. Given r > 0, choose u, ū ∈ B̄r(0), which implies

|U(u)(x)− U(ū)(x)|
(B.3)
≤
∫

Ω

|φ(x, y, u(y))− φ(x, y, ū(y))| dy

≤
∫

Ω

λr(x, y) |u(y)− ū(y)| dy ≤ sup
x∈Ω

∫
Ω

λr(x, y) dy ‖u− ū‖ ≤ `(r) ‖u− ū‖ .

Passing over to the supremum over x ∈ Ω shows ‖U(u)− U(ū)‖ ≤ `(r) ‖u− ū‖.

Theorem B.7 (differentiability of U(u)). Let m ∈ N0. If φ : Ω2 ×Rd → Y is of class
Cm1 , then U(u) ∈ Cm(Ω, Y ) with the derivatives

U(u)(j) =

∫
Ω

Dj
1φ(·, y, u(y)) dy for all 0 ≤ j ≤ m, u ∈ Cd.

Proof. Let u ∈ Cd be fixed and define r := ‖u‖ for u 6= 0 and r := 1 else. For m = 0
the claim results from Thm. B.5.
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(I) For 0 ≤ j ≤ m we consider the Urysohn integral operators

Uj(u) :=

∫
Ω

Dj
1φ(·, y, u(y)) dy

with continuous kernel functions. As quoted in the proof of Thm. B.5 one obtains the
inclusion Uj(u) ∈ C(Ω, Lj(Rκ, Y )). We establish that U(u) : Ω→ Y is of class Cm.

(II) Let us abbreviate Fj(x, y) := Dj
1φ(x, y, u(y)) and due to our assumption, the

functions Fj : Ω2 → Lj(Rκ, Y ) are continuous. First, y 7→ Fj(x, y) is integrable for
all x ∈ Ω, since Ω is compact. Second, the partial derivative D1Fj = Fj+1 exists by
assumption for 0 ≤ j < m. Third, because Dj+1

1 φ is bounded on the compact product
Ω2 × B̄r(0), also Fj+1 is bounded on Ω2 and thus integrable. Then differentiability of
parameter integrals from e.g. [3, p. 90, 16.3 Cor.] implies the derivatives

Uj(u)′ =

∫
Ω

D1Fj(·, y) dy =

∫
Ω

Dj+1
1 φ(·, y, u(y)) dy = Uj+1(u)

for all 0 ≤ j < m. Now induction yields U(u)(m) = U0(u)(m) = Um(u), where the
mapping Um(u) : Ω→ Lm(Rκ, Y ) is continuous due to (I). Hence, also themth order
derivative U(u)(m) is continuous and the claim follows.

Theorem B.8 (differentiability of U). Let m ∈ N0. If φ : Ω2 × Rd → Y is of class
Cmf , then U : Cd → C(Ω, Y ) is of class Cm with the derivatives

DjU(u)h1 . . . hj =

∫
Ω

Dj
3φ(·, y, u(y))h1(y) . . . hj(y) dy for all 0 ≤ j ≤ m

and DU(u) ∈ L(Cd, C(Ω, Y )) is compact for all functions u, h1, . . . , hj ∈ Cd.

Proof. Let u, h ∈ Cd be fixed throughout.
(I) For each 1 ≤ j ≤ m let us define the mappings rj : Cd → R+,

rj(h) := λκ(Ω) sup
x,y∈Ω

sup
ϑ∈[0,1]

∣∣∣Dj
3φ(x, y, u(y) + ϑh(y))−Dj

3φ(x, y, u(y))
∣∣∣

and establish limh→0 rj(h) = 0. We abbreviate ξ := (x, y) and given ε > 0, ξ0 ∈ Ω2

our assumption yields a δ(ξ0) > 0 so that
∣∣∣Dj+1

3 φ(ξ0, z1)−Dj+1
3 φ(ξ0, z2)

∣∣∣ < ε
2λκ(Ω)

holds for z1, z2 ∈ Rd, |z1 − z2| < δ(ξ0). Because
{
Bδ(ξ)(ξ) : ξ ∈ Ω2

}
is an open

cover of the compact product Ω2, there exist finitely many ξ1, . . . , ξn ∈ Ω2 with

Ω2 ⊆
n⋃
i=1

Bδ(ξi)(ξi).

We define δ0 := min {δ(ξi) : 1 ≤ i ≤ n} > 0 and for every ξ ∈ Ω2 one finds an index
ι ∈ {1, . . . , n} such that ξ ∈ Bδ(ξι)(ξι) holds. Hence, |z1 − z2| < δ0 ≤ δ(ξι) yields∣∣∣Dj+1

3 φ(ξ, z1)−Dj+1
3 φ(ξ, z2)

∣∣∣ < ε
2λκ(Ω) for ξ ∈ Ω2. If ‖h‖ < δ0 and x, y ∈ Ω, then∣∣∣Dj+1

3 φ(x, y, u(y) + ϑh(y))−Dj+1
3 φ(x, y, u(y))

∣∣∣ < ε
2λκ(Ω) for all ϑ ∈ [0, 1]
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holds. Passing over to the supremum for ϑ ∈ [0, 1], x, y ∈ Ω leads to |rj+1(h)| < ε.
(II) For 0 ≤ j < m we introduce

Fj : Ω× Cd → Lj(Rd, Y ), Fj(x, u) :=

∫
Ω

Dj
3φ(x, y, u(y)) dy,

F ′j : Ω× C2(Ω)d → Lj(Rd, Y ), F ′j(x, u, h) :=

∫
Ω

Dj+1
3 φ(x, y, u(y))h(y) dy.

As readily seen, the mappings h 7→ F ′j(·, u, h) are linear and bounded. From the mean
value theorem [12, p. 341, Thm. 4.2] we arrive at∣∣Fj(x, u+ h)− Fj(x, u)− F ′j(x, u, h)

∣∣
=

∣∣∣∣∫
Ω

Dj
3φ(x, y, u(y) + h(y))−Dj

3φ(x, y, u(y))−Dj+1
3 φ(x, y, u(y))h(y) dy

∣∣∣∣
=

∣∣∣∣∫
Ω

∫ 1

0

[
Dj+1

3 φ(x, y, u(y) + ϑh(y))−Dj+1
3 φ(x, y, u(y))

]
dϑh(y) dy

∣∣∣∣
≤
∫

Ω

sup
ϑ∈[0,1]

∣∣∣Dj+1
3 φ(x, y, u(y) + ϑh(y))−Dj+1

3 φ(x, y, u(y))
∣∣∣ dy ‖h‖

≤ rj+1(h) ‖h‖ for all x ∈ Ω. (B.4)

(III) Passing to the supremum over x ∈ Ω in the inequality

|U(u+ h)(x)− U(u)(x)− F ′0(x, u, h)|
(B.3)
= |F0(x, u+ h)− F0(x, u)− F ′0(x, u, h)|

(B.4)
≤ r1(h) ‖h‖

yields ‖U(u+ h)− U(u)− F ′0(·, u, h)‖ ≤ r1(h) ‖h‖. Hence, due to its uniqueness
and limh→0 r1(h) = 0, one has the Fréchet derivative DU(u)h = F ′0(·, u, h) and as in
Thm. B.5, u 7→ DU(u) is continuous, i.e. U : Cd → C(Ω, Y ) is of class C1.

(IV) We now proceed by mathematical induction and assume that the Urysohn
integral operator U is of class Cj , j < m. It results for every x ∈ Ω that∣∣DjU(u+ h)(x)−DjU(u)(x)− F ′j(x, u, h)

∣∣
=
∣∣Fj(x, u+ h)− Fj(x, u)− F ′j(x, u, h)

∣∣ (B.4)
≤ rj+1(h) ‖h‖ .

Hence, DjU is differentiable in u with the derivative h 7→ F ′j(·, u, h). As in the proof
of Thm. B.5 one shows that Dj+1U is also continuous.

(V) Combined with Thm. B.5 for m ∈ N we established that U : Cd → C(Ω, Y ) is
a completely continuous C1-mapping. Thus, [13, p. 89, Prop. 6.5] finally implies that
the derivative DU(u) is compact.
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