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Abstract. Integrodifference equations are successful and popular models in theoretical ecology4
to describe spatial dispersal and temporal growth of populations with nonoverlapping generations. In5
relevant situations, such infinite-dimensional discrete dynamical systems have a globally attractive6
periodic solution. We show that this property persists under sufficiently accurate spatial (semi-)7
discretizations of collocation- and degenerate kernel-type using linear splines. Moreover, convergence8
preserving the order of the method is established. This justifies theoretically that simulations capture9
the behavior of the original problem. Several numerical illustrations confirm our results.10
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1. Introduction. Integrodifference equations (short IDEs) are a recursions14

(I0) ut+1 = Ft(ut),15

whose right-hand side is a nonlinear integral operator16

(1.1) Ft(u)(x) := Gt

(
x,

∫
Ω

ft(x, y, u(y)) dy

)
for all t ∈ Z, x ∈ Ω17

acting on an ambient state space of functions u over a domain Ω. Such infinite-18

dimensional discrete dynamical systems arise in various contexts: In the life sciences19

they originate from population genetics [12], but gained a remarkable popularity in20

theoretical ecology [7] over the last decades. Here, they model the growth and spatial21

dispersal of populations with non-overlapping generations. At the same token, they22

might serve in epidemiology. In applied mathematics, IDEs occur as time-1-maps of23

evolutionary differential equations or as iterative schemes to solve (nonlinear) bound-24

ary value problems.25

When simulating the dynamical behavior of IDEs (I0), appropriate discretizations26

are due in order to arrive at finite-dimensional state spaces and to replace (I0) by27

a corresponding recursion. For this purpose, we apply standard techniques in the28

numerical analysis of integral eqns. [1] to (1.1), namely collocation and degenerate29

kernel methods. This triggers the question whether such numerical approximations30

actually reflect the dynamics of the original problem (I0)?31

Since the resulting discretization error typically grows exponentially in time [10,32

Thm. 4.1], corresponding estimates are of little use when questions on the asymp-33

totic behavior are of interest. Indeed, while the global error only yields convergence34

on finite intervals, we investigate the long-term dynamics of IDEs versus their dis-35

cretizations. More detailed, it is shown that global convergence of a sequence (ut)t≥036

generated by (I0) to a fixed point or a periodic solution, independent of the initial37

function u0, persists under discretization. In addition, we prove that the original and38

and the limit of the discretized equation are close to each other respecting the error39
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2 CHRISTIAN PÖTZSCHE

order of the approximation method. This can be seen as a first contribution to the nu-40

merical dynamics of IDEs, i.e. the field in theoretical numerical analysis investigating41

the question, which qualitative properties of a dynamical system persist under dis-42

cretization? A survey of such results addressing time-discretizations of ODEs is given43

in [14], while we tackle a corresponding theory for spatial discretizations of IDEs.44

In applications the existence of globally attractive solutions to (I0) is of eminent45

importance and holds in various representative models. Indeed, conditions for global46

attractivity of periodic solutions to IDEs were given in [2]. We study the robustness47

of this property using a quantitative version of a result by Smith and Waltman [13].48

The content and framework of this paper are as follows: We consider IDEs (I0)49

being periodic in t; this assumption is well-motivated from applications in the life50

sciences to describe seasonality. As state space for (I0) serve the continuous functions51

over a compact domain and technical preliminaries were given in [10]. For conceptional52

clarity we restrict to discretizations based on piecewise linear functions, although our53

perturbation results apparently allow higher-order approximations. Moreover, the54

given analysis covers semi-discretization methods only.55

After summarizing the essential assumptions on and properties of (I0) in Sect. 2,56

we present our crucial perturbation result given by Thm. 2.1. It is applied to spatial57

discretizations of (1.1) based on collocation with piecewise linear functions. The cor-58

responding interpolation estimates yield quadratic convergence (cf. Prop. 2.3), which59

is numerically confirmed by two examples. Hammerstein IDEs frequently arise in ap-60

plications (see [7]), where (1.1) simplifies to a Hammerstein operator. This relevant61

special case particularly allows degenerate kernel approximations. In Sect. 3 we pro-62

vide an adequate discretization and convergence theory. Since Hammerstein operators63

have a simpler structure than (1.1), the associate Prop. 3.1 is more accessible than64

the general Prop. 2.3. For illustrative purposes, we numerically study 4-periodic solu-65

tions to a Beverton-Holt-type IDE, which affirms our theoretical results. An appendix66

contains a quantitative version of [13, Thm. 2.1] in terms of Thm. A.1.67

Notation. Let R+ := [0,∞), denote the norm on linear spaces X,Y by ‖·‖ and
V ◦ is the interior of a (nonempty) subset V ⊆ X. If a function f : V → Y satisfies a
Lipschitz condition, then lip f is its smallest Lipschitz constant and

ω(δ, f) := sup
‖x−x̄‖<δ

‖f(x)− f(x̄)‖ for all δ > 0

the modulus of continuity of f . The limit relation limδ↘0 ω(δ, f) = 0 holds if and only68

if f is uniformly continuous. The classes N := {Γ : R+ → R+ | limρ↘0 Γ(ρ) = 0} and69

N∗ := {Γ ∈ N | Γ is nondecreasing} of limit 0 functions are convenient.70

Throughout this text, let Ω ⊂ Rκ denote a nonempty, compact set without iso-71

lated points. If U ⊆ Rd, then we write72

C(Ω, U) := {u : Ω→ U | u is continuous} , Cd := C(Ω,Rd)7374

and the maximum norm ‖u‖ := maxx∈Ω |u(x)| makes C(Ω,Rd) a Banach space. The75

set of u : Ω → Rd, whose derivatives Dju up to order j ≤ m have a continuous76

extension from the interior Ω◦ 6= ∅ to Ω is Cm(Ω,Rd), m ∈ N0.77

2. Urysohn integrodifference equations and perturbation. The right-78

hand sides of (I0) are mappings Ft : Ut ⊆ Cd → Cd, t ∈ Z, defined on the space79

of Rd-valued continuous functions. For d = 1 we speak of scalar eqns. (I0).80

A solution of (I0) is a sequence φ = (φt)t∈Z satisfying φt+1 = Ft(φt) and φt ∈ Ut81

for every t ∈ Z. If there exists a θ ∈ N such that φt+θ = φt holds for all t ∈ Z, then82
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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE EQUATIONS 3

φ is called θ-periodic. Given an initial time τ ∈ Z and an initial state uτ ∈ Uτ , then83

the general solution of (I0) is84

(2.1) ϕ0(t; τ, uτ ) :=

{
uτ , t = τ,

Ft−1 ◦ . . . ◦ Fτ , t > τ ;
85

it is defined for times t > τ as long as the compositions stay in the domains Ut.86

We are dealing with IDEs (I0) being periodic in time, i.e. there exists a period87

θ ∈ N such that ft = ft+θ and Gt = Gt+θ hold for all t ∈ Z. Then (1.1) implies88

Ft = Ft+θ, t ∈ Z, and (I0) becomes a θ-periodic difference equation. In case θ = 1, i.e.89

the right-hand sides Ft are independent of t, one speaks of an autonomous equation.90

The following standing assumptions are supposed to hold for all s ∈ Z: Let m ∈ N,91

• fs : Ω2×U1
s → Rp is continuous on an open, convex, nonempty U1

s ⊆ Rd and
the derivatives Dj

1fs : Ω2 × U1
s → Rp for 1 ≤ j ≤ m, D3fs : Ω× U1

s → Rp×d
may exist as continuous functions. Furthermore, for every ε > 0 and x, y ∈ Ω
there may exist a δ > 0 such that

|z1 − z2| < δ ⇒ |D3fs(x, y, z1)−D3fs(x, y, z2)| < δ for all z1, z2 ∈ U1
s .

• Gs : Ω×U2
s → Rd is a Cm-function on an open, convex, nonempty U2

s ⊆ Rp.
Moreover, for every ε > 0, x ∈ Ω, there may exist a δ > 0 such that

|z1 − z2| < δ ⇒ |D2Gs(x, z1)−D2Gs(x, z2)| < δ for all z1, z2 ∈ U2
s

and the following domain is assumed to be convex:

Us :=

{
u ∈ C(Ω, U1

s )

∣∣∣∣∣
∫

Ω

fs(x, y, u(y)) dy ∈ U2
s for all x ∈ Ω

}
.

Then the Urysohn operator92

Us : C(Ω, U1
s )→ Cp, Us(u) :=

∫
Ω

fs(·, y, u(y)) dy(2.2)93
94

is completely continuous and of class C1 on the interior C(Ω, U1
s )◦. Referring to [10]195

this guarantees that the general solution of (I0) fulfills:96

(P1) ϕ0(t; τ, ·) : Uτ → Cd is completely continuous for all τ < t (see [10, Cor. 2.2]),97

(P2) ϕ0(t; τ, u) ∈ Cm(Ω◦,Rd) for all τ < t, u ∈ Cd (see [10, Cor. 2.6]),98

(P3) ϕ0(t; τ, ·) ∈ C1(Uτ , Cd) for all τ ≤ t (see [10, Prop. 2.7]).99

Along with (I0) we consider difference equations100

(In) ut+1 = Fnt (ut)101

depending on a discretization parameter n ∈ N. Defining the local discretization error

εt(u) := Ft(u)− Fnt (u) for all u ∈ Ut,

we denote (In)n∈N as bounded convergent, if limn→∞ supu∈B ‖εnt (u)‖ = 0 holds for all
t ∈ Z and every bounded B ⊂ Ut. One says (In) has convergence rate γ > 0, if for
every bounded B ⊆ Ut there exists a K(B) ≥ 0 such that

‖ent (u)‖ ≤ K(B)

nγ
for all t ∈ Z, u ∈ B.

Now, under appropriate assumptions we arrive at the crucial perturbation result:102

1This reference assumes a globally defined operator Fs, i.e. Us = Cd. Yet, the reader might verify
that the corresponding proofs merely require the domains U1

s , U
2
s to be convex (as assumed above).
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4 CHRISTIAN PÖTZSCHE

Theorem 2.1. Suppose there exists a θ-periodic solution φ∗ of (I0) with φ∗t ∈ U◦t103

for all t ∈ Z and the following properties:104

(i) φ∗ is globally attractive, i.e. the limit limt→∞ ‖ϕ0(t; τ, uτ )− φ∗t ‖ = 0 holds105

for all τ ∈ Z, uτ ∈ Uτ ,106

(ii) σ(DFθ(φ
∗
θ) · · ·DF1(φ∗1)) ⊂ Bq0(0) for some q0 ∈ (0, 1).107

If a bounded convergent discretization (In)n∈N is θ-periodic and satisfies108

(iii) Fns : Us → Cd is completely continuous, of class C1, DFns : Us → L(Cd) are109

bounded2 (uniformly in n ∈ N) and110

(2.3) lim
n→∞

‖Dεns (u)‖ = 0 for all u ∈ Us,111

(iv) there exist ρ0 > 0 and functions Γ0
0,Γ

1
0, γ

1 ∈ N so that for all n ∈ N one has112 ∥∥Djεns (φ∗s)
∥∥ ≤ Γj0( 1

n ) for all j = 0, 1,(2.4)113

‖DFns (u)−DFns (φ∗s)‖ ≤ γ1(‖u− φ∗s‖) for all u ∈ Bρ0(φ∗s) ∩ Us,(2.5)114115

(v) for every n ∈ N0 there is a bounded set Bn ⊂ Us such that
⋃
n∈N0

Bn is116

bounded and for every u ∈ Cd there is a T ∈ N with ϕn(s+ Tθ; s, u) ∈ Bn117

for each 1 ≤ s ≤ θ, then there exists a N ∈ N such that the following holds: Every118

discretization (In)n≥N possesses a globally attractive θ-periodic solution φn and there119

exist q ∈ (q0, 1), K ≥ 1 such that120

(2.6) sup
t∈Z
‖φnt − φ∗t ‖ ≤

K

1− q
Γ0

0( 1
n ) for all n ≥ N.121

Remark 2.2. A careful study of the subsequent proof shows:122

(1) If φ∗ is a globally attractive fixed-point of an autonomous eqn. (I0), then the123

assumption of bounded derivatives DFns in (iii) is redundant.124

(2) The constant K ≥ 1 in (2.6) essentially depends on Lipschitz constants of125

Ft in a vicinity of the solution φ∗ (cf. (2.8)). Similarly, the larger these Lipschitz126

constants are, and the closer one has to choose q0 to 1 in (ii), the larger N becomes.127

Proof. Let τ ∈ Z, u ∈ Uτ be fixed. In order to match the setting of Thm. A.1,128

consider the parameter set Λ :=
{

1
n : n ∈ N

}
∪{0} as metric subspace of R and define129

λ0 := 0, u0 := φ∗τ , U := Uτ . If ϕn denote the general solutions of (In), n ∈ N0, then130

(2.7) Πλ(u) :=

{
ϕ0(τ + θ; τ, u), λ = 0,

ϕn(τ + θ; τ, u), λ = 1
n

131

are the corresponding time-θ-maps. It follows from (P3) that Πλ0 : Uτ → Cd is132

continuously differentiable. Moreover, each Πλ : Uτ → Cd is a composition of the C1-133

mappings Fnτ , . . . ,F
n
τ+θ−1 (due to (iii)) and therefore also continuously differentiable134

for all λ > 0. We gradually verify the assumptions (i’–v’) of Thm. A.1 next:135

ad (i’): Combining global attractivity (i) and periodicity of φ∗ implies∥∥Πs
λ0

(u)− φ∗τ
∥∥ (2.7)

=
∥∥ϕ0(τ + sθ; τ, u)− φ∗τ+sθ

∥∥ (i)−−−→
s→∞

0.

ad (ii’): Using mathematical induction one easily derives from (2.1) that

D3ϕ0(t; τ, u) = DFt−1(ϕ0(t− 1; τ, u)) · · ·DFτ (ϕ0(τ ; τ, u)) for all τ < t

2Understood as mapping bounded sets into bounded sets.
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and hence DΠλ0
(φ∗τ ) = DFτ+θ−1(φ∗τ+θ−1) · · ·DFτ (φ∗τ ) holds. Because the spectrum136

σ(DFθ(φ
∗
τ+θ−1) · · ·DF1(φ∗τ ))\{0} is independent of τ , our assumption (ii) implies the137

inclusion σ(DΠλ0
(φ∗τ )) ⊂ Bq0(0). If we choose q ∈ (q0, 1), then referring to [5, p. 6,138

Technical lemma] there exists an equivalent norm ‖·‖ on X with ‖DΠλ0(φ∗τ )‖ ≤ q and139

we use this norm from now on (without changing notation). The still owing continuity140

of DΠλ(u) in (u, λ) will be shown below.141

ad (iii’): The main argument is based on error estimates having been prepared142

in [10, Prop. 4.5], whose notation we adopt from now on. Due to assumption (iii),143

the sets DFnt (Bρ0(φ∗t )) ⊂ L(Cd) are bounded uniformly in n and consequently there144

exists a θ-periodic sequence (Lt)t∈Z in R+ such that145

(2.8) ‖Fnt (u)− Fnt (ū)‖ ≤ Lt ‖u− ū‖ for all u, ū ∈ Bρ0(φ∗t ) ∩ Ut146

holds, yielding the required Lipschitz condition [10, (4.6)]. In [10, Prop. 4.5(a)] we
verified that there exists a N0 ∈ N such that n ≥ N0 implies the error estimate

‖ϕn(t; τ, uτ )− φ∗t ‖ ≤

(
t−1∏
r=τ

Lr

)
‖uτ − φ∗τ‖+ Γ0

0( 1
n )

t−1∑
s=τ

t−1∏
r=s+1

Lr.

Supposing n ≥ N0 (or equivalently λ < 1
N0

) from now on, this leads to

‖Πλ(u0)−Πλ0
(u0)‖ (2.7)

= ‖ϕn(τ + θ; τ, φ∗τ )− ϕ0(τ + θ; τ, φ∗τ )‖ ≤ Γ0( 1
n ),

where we define Γ0(δ) := Γ0
0(δ)

∑τ+θ−1
s=τ

∏τ+θ−1
r=s+1 Lr. Thanks to Γ0 ∈ N, the assump-147

tion (A.1) is satisfied. In order to also establish (A.2), we furthermore deduce from148

the inequality derived in [10, Prop. 4.5(b)] that149

‖DΠλ(u)−DΠλ0
(u0)‖ = ‖D3ϕn(τ + θ; τ, u)−D3ϕ0(τ + θ; τ, φ∗τ )‖150

≤ γ0(‖u− φ∗τ‖ , 1
n )151152

with the function

γ0(ρ, δ) :=

τ+θ−1∑
s=τ

`s
[
γ1(γ̃s(ρ, δ)) + Γ1

0(δ)
] τ+θ−1∏
r=s+1

Lr,

where γ̃t(ρ, δ) := ρ
∏t−1
r=τ Lr+δ

∑t−1
s=τ

∏t−1
r=s+1 Lr and `t :=

∏t−1
s=τ ‖DFs(φ

∗
s)‖ for every153

τ ≤ t < τ + θ. Due to γ0(ρ, δ) → 0 in the limit ρ, δ ↘ 0, the assumption (A.2) is154

verified. This eventually brings us into the position to establish (ii’) completely, i.e.155

to show that (u, λ) 7→ DΠλ(u) is continuous:156

• In pairs (ũ0, λ) ∈ Cd ×
{

1
n : n ∈ N

}
this results by the continuity of every157

derivative DFns , which was required in (iii).158

• In the remaining points (ũ0, 0) we obtain

‖DΠλ(u)−DΠλ0(ũ0)‖ ≤ ‖DΠλ(u)−DΠλ0(u)‖+ ‖DΠλ0(u)−DΠλ0(ũ0)‖ .

The first summand tends to 0 as λ → λ0, since assumption (iii) implies
convergence of the derivatives DFns , the assumed bounded convergence of the
family (In)n∈N guarantees convergence of the solutions, and thus due to the
convergence of every factor in the product,

DΠλ(u) =

τ+θ−1∏
s=τ

DFns (ϕn(s; τ, u)) −−−−→
λ→λ0

τ+θ−1∏
s=τ

DFs(ϕ0(s; τ, u)) = DΠλ0
(u).
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6 CHRISTIAN PÖTZSCHE

The second term in the sum has limit 0 as u→ ũ0 because of the continuity159

of DFs ensured by (P3).160

ad (iv’): Thanks to (v), the bounded sets B̃λ := Bn (with λ = 1
n ), B̃λ0

:= B0161

satisfy the assumption that for all u ∈ Uτ there is a T ∈ N with ΠT
λ (u) ∈ B̃λ.162

ad (v’): Property (P1) and assumption (iii) imply that each Πλ(B̃λ) ⊆ Cd, λ ∈ Λ,
is relatively compact. Due to the Arzelà-Ascoli theorem [4, p. 44, Thm. 3.3] it remains
to show that

⋃
λ∈Λ Πλ(B̃λ) is bounded and equicontinuous:

ad boundedness: The set B :=
⋃
λ∈Λ B̃λ is bounded due to (v). First, as completely

continuous mapping, Πλ0 : Uτ → Cd is bounded and there exists a R1 > 0 satisfying
the inclusion Πλ0

(B) ⊂ BR1
(0). Second, because (In)n∈N is bounded convergent, we

obtain a R2 > 0 with ‖Πλ(u)−Πλ0
(u)‖ ≤ R2 for all u ∈ B and

‖Πλ(u)‖ ≤ ‖Πλ0(u)‖+ ‖Πλ(u)−Πλ0(u)‖ ≤ R1 +R2 for all u ∈ B, λ > 0

readily implies
⋃
λ∈Λ Πλ(B̃λ) ⊆ BR1+R2

(0).163

ad equicontinuity : Let ε > 0. The assumed bounded convergence of (In)n∈N guaran-164

tees that there exists a λ∗ ∈ Λ such that165

(2.9) ‖Πλ(u)−Πλ0
(u)‖ < ε

4 for all u ∈ B, λ < λ∗.166

Because Πλ0(B) is relatively compact, the Arzelà-Ascoli theorem [4, p. 44, Thm. 3.3]167

ensures that Πλ0
(B) is equicontinuous and by [4, p. 43, Prop. 3.1] in turn uniformly168

equicontinuous. That is, there exists a δ > 0 such that the implication169

(2.10) |x− y| < δ ⇒ |Πλ0(u)(x)−Πλ0(u)(y)| < ε
4170

holds for all x, y ∈ Ω. Hence, for λ < λ∗ and |x− y| < δ the triangle inequality yields171

|Πλ(u)(x)−Πλ(u)(y)|172

≤ |Πλ(u)(x)−Πλ0
(u)(x)|+ |Πλ0

(u)(x)−Πλ0
(u)(y)|+ |Πλ0

(u)(y)−Πλ(u)(y)|173

(2.9)

≤ ε
2 + |Πλ0(u)(x)−Πλ0(u)(y)|

(2.10)

≤ 3ε
4 < ε for all u ∈ B.174

Therefore, the union
⋃
λ<λ∗

Πλ(B) is equicontinuous, and as subset of this equicon-175

tinuous set, also
⋃
λ<λ∗

Πλ(B̃λ). Finally, because equicontinuity is preserved under176

finite unions, the desired set
⋃
λ∈Λ Πλ(B̃λ) is equicontinuous.177

In conclusion Thm. A.1 applies, if we choose ρ > 0 so small and N ≥ N0 so178

large that Γ0( 1
n ) ≤ 1−q

2n , γ0(ρ, 1
n ) ≤ 1−q

2 for all n ≥ N . Hence, there exists a globally179

attractive fixed point u∗(λ) of Πλ (where λ = 1
n ). Since the fixed points of Πλ180

correspond to the θ-periodic solutions of (In), we define φnt := ϕn(t; τ, u∗( 1
n )). This is181

the desired θ-periodic solution of (In). In particular, it is not difficult to see that φn182

is globally attractive w.r.t. (In)n≥N , where Thm. A.1(b) implies (2.6).183

Next we concretize Thm. 2.1 to collocation and degenerate kernel discretizations184

of (I0). In doing so, let us for simplicity restrict to piecewise linear approximation.185

2.1. Piecewise linear collocation. Given n ∈ N, for reals ai < bi, 1 ≤ i ≤ κ,186

we introduce the nodes ξij := ai + j bi−ain . Let us define the hat functions187

eij : [a, b]→ [0, 1], eij(x) := max
{

0, 1− n
bi−ai

∣∣x− ξij∣∣} for all 0 ≤ j ≤ n188
189
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and assume that the domain of integration for (I0) (the habitat) is the κ-dimensional190

rectangle Ω = [a1, b1]×· · ·× [aκ, bκ] having Lebesgue measure λκ(Ω) =
∏κ
i=1(bi−ai).191

With the set of multiindices Iκn := {0, . . . , n}κ we define the projections192

Pnu :=
∑
ι∈Iκn

eιu(ξ1
ι1 , . . . , ξ

κ
ικ), eι(x) :=

κ∏
i=1

eiιi(xιi) for all ι ∈ Iκn193

194

from Cd into the continuous Rd-valued functions over Ω having piecewise linear com-195

ponents. These projections satisfy196

(2.11) ‖Pn‖ ≤ 1 for all n ∈ N.197

Introducing the partial moduli of continuity

ωi(ρ, u) := sup
x∈Ω
{|u(x1, . . . , x̄i, . . . , xκ)− u(x1, . . . , xi, . . . , xκ)| : |x̄i − xi| < ρ}

over the coordinates 1 ≤ i ≤ κ, we obtain from [11, Thm. 5.2(ii) and (iii)] (combined198

with (2.11)) the interpolation estimate199

(2.12) ‖u− Pnu‖ ≤
κ∑
i=1

(
bi−ai
n

)j
ωi

(
bi−ai
n , Dj

iu
)

for all n ∈ N,200

if u ∈ Cj(Ω,Rd) and j ∈ {0, 1}. In case u ∈ C2(Ω,Rd) one even has (cf. [3, p. 227])201

(2.13) ‖u− Pnu‖ ≤ 1
8

κ∑
i=1

(
bi−ai
n

)2
max
x∈Ω

∣∣D2
i u(x)

∣∣ for all n ∈ N.202

The semi-discretizations (In) may have the right-hand sides203

(2.14) Fnt (u) := PnFt(u) =
∑
ι∈Iκn

eιGt

(
ξ1
ι1 , . . . , ξ

κ
ικ ,

∫
Ω

ft(ξ
1
ι1 , . . . , ξ

κ
ικ , y, u(y)) dy)

)
.204

This allows the following persistence and convergence result for globally attractive205

periodic solutions to general IDEs (I0):206

Proposition 2.3 (piecewise linear collocation). Suppose that a θ-periodic solu-207

tion φ∗ of an Urysohn IDE (I0) with right-hand side (1.1) satisfies the assumptions208

(i–ii) of Thm. 2.1 and choose q ∈ (q0, 1). If there exist a209

(ic) ρ0 > 0, functions γ̃0 ∈ N, γ̃, γ̃1, Γ̃ ∈ N∗, and for bounded B1 ⊂ U1
s , B2 ⊂ U2

s210

there exist γ∗B1
,Γ1

B2
∈ N, Γ2

B1
∈ N∗ so that for x, x̄, y ∈ Ω one has211

|fs(x, y, z)− fs(x̄, y, z)| ≤ γ̃(|x− x̄|) for all z ∈ B1,212 ∣∣∣Dj
3fs(x, y, z)−D

j
3fs(x, y, z̄)

∣∣∣ ≤ γ̃j(|z − z̄|) for all z, z̄ ∈ Bρ0(φ∗s(y)),213

|D3fs(x, y, z)−D3fs(x̄, y, z)| ≤ γ∗B1
(|x− x̄|) for all z ∈ B1214215

and216

|Gs(x, z)−Gs(x̄, z)| ≤ Γ1
B2

(|x− x̄|) for all z ∈ B2,217

|Gs(x, z)−Gs(x, z̄)| ≤ Γ2
B2

(|z − z̄|) for all z, z̄ ∈ B2,218

|D2Gs(x, z)−D2Gs(x, z̄)| ≤ Γ̃(|z − z̄|) for all z, z̄ ∈ U2
s ,219220
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(iic) C ≥ 0 such that |fs(x, y, z)| ≤ C for all x, y ∈ Ω, z ∈ U1
s221

for each 1 ≤ s ≤ θ, then there exists a N ∈ N so that every collocation discretiza-222

tion (In) with right-hand side (2.14) and n ≥ N possesses a globally attractive θ-223

periodic solution φn. Furthermore, there is a K̃ ≥ 1 such that for all n ≥ N the224

following holds:225

(a) ‖φnt − φ∗t ‖ ≤ K̃
1−q

∑κ
i=1 maxθs=1 ωi

(
bi−ai
n ,Fs(φ

∗
s)
)

for all t ∈ Z,226

(b) if m = 1, then

‖φnt − φ∗t ‖ ≤
K̃

(1− q)n

κ∑
i=1

(bi−ai)
θ

max
s=1

ωi
(
(bi−ai)ρ,Di(Fs(φ

∗
s))
)

for all t ∈ Z,

(c) if m = 2, then

‖φnt − φ∗t ‖ ≤
K̃

8(1− q)n2

κ∑
i=1

(bi − ai)2 θ
max
s=1

∥∥D2
i (Fs(φ

∗
s))
∥∥ for all t ∈ Z.

The quadratic error decay in (c) also holds on non-rectangular Ω ⊂ Rκ. For e.g.227

polygonal Ω a corresponding interpolation inequality is mentioned in [10, Sect. 3.1.3].228

229

Remark 2.4 (functions in (ic)). In concrete applications, the functions γ̃, γ̃j , γ
∗
B1

230

and Γ1
B2
,Γ2

B2
, Γ̃ are realized by means of (local) Lipschitz or Hölder conditions on fs231

resp. Gs. Although they do not appear in the assertion of Prop. 2.3, the interested232

reader might use them, combined with estimates in the subsequent proof, to obtain a233

more quantitative version of Prop. 2.3.234

Remark 2.5 (dependence of K̃,N). In addition to Rem. 2.2(2) concerning the235

dependence of K̃ and N on the properties of (I0), the following proof shows that these236

constants also grow with the measure λκ(Ω) of the domain Ω.237

Remark 2.6 (dissipativity). The global boundedness assumption (iic) appears to238

be rather restrictive, but is valid in various applications (see [7]), since growth func-239

tions in population dynamical models are typically bounded. Yet, a weaker condition240

ensuring dissipativity is given in [9, pp. 190–191, Prop. 4.1.5].241

Proof. Let t ∈ Z, u ∈ Ut be fixed and choose v ∈ Cd, ‖v‖ = 1. Suppose B1 ⊆ U1
t242

is a bounded set containing u(Ω). We begin with preliminaries and notation: If Ut243

denotes the Urysohn integral operator (2.2), then we briefly write Vt(x) := Ut(u)(x),244

V ∗t (x) := Ut(φ
∗
t )(x) and choose B2 ⊆ U2

t so that Vt(Ω) ⊆ B2. Hence, (iic) implies245

(2.15) |Vt(x)| ≤
∫

Ω

|ft(x, y, u(y))| dy ≤ λκ(Ω)C for all x ∈ Ω.246

Furthermore, the Fréchet derivative247

(2.16) [DFt(u)v](x) = D2Gt(x, Vt(x))

∫
Ω

D3ft(x, y, u(y))v(y) dy for all x ∈ Ω248

exists due to (P3). Note that θ-periodicity of Gt, ft readily extends to Ft and Fnt . Let249

us now check the remaining assumptions of Thm. 2.1.250

ad (iii): With [10, Thm. 3.1], Fnt are completely continuous and of class C1 with251

‖DFnt (u)‖ (2.14)
= ‖PnDFt(u)‖

(2.11)

≤ ‖DFt(u)‖252
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(2.16)

≤ max
ξ∈Ω
|D2Gt(ξ, Vt(ξ))|

∥∥∥∥∫
Ω

|D3ft(·, y, u(y))| dy

∥∥∥∥ for all n ∈ N.253

Therefore, the derivatives DFnt are bounded maps (uniformly in n ∈ N). The func-254

tions Ft : Ω → L(Rp,Rd), Ft(x) := D2Gt(x, Vt(x)) are continuous, hence uniformly255

continuous on the compact set Ω and their modulus ω(·, Ft) of continuity satisfy the256

limit relation limρ↘0 ω(ρ, Ft) = 0. Then257

258

|[DFt(u)v](x)− [DFt(u)v](x̄)|259

(2.16)

≤ |Ft(x)− Ft(x̄)|
∫

Ω

|D3ft(x, y, u(y))v(y)| dy260

+ |Ft(x̄)|
∫

Ω

|D3ft(x, y, u(y))v(y)−D3ft(x̄, y, u(y))v(y)| dy261

≤ θ
max
s=1

∥∥∥∥∫
Ω

|D3fs(·, y, u(y))| dy

∥∥∥∥ω(|x− x̄| , Fs)262

+ λκ(Ω)
θ

max
s=1

max
ξ∈Ω
|Fs(ξ)| γ∗B1

(|x− x̄|) for all x, x̄ ∈ Ω263
264

results from the triangle inequality. Thus, the continuous function DFt(u)v : Ω→ Rd
has a modulus of continuity being uniform in v (with ‖v‖ = 1), which implies

‖Dεnt (u)‖ = sup
‖v‖=1

‖[I − Pn]DFt(u)v‖
(2.12)

≤ sup
‖v‖=1

κ∑
i=1

ωi
(
bi−ai
n , DFt(u)v

)
−−−−→
n→∞

0

and therefore (2.3) holds. In addition, we also verified (2.4) (for j = 1) with265

266

Γ1
0(ρ) :=

θ
max
s=1

∥∥∥∥∫
Ω

|D3fs(·, y, φ∗s(y))| dy

∥∥∥∥ω(ρ, Fs)267

+ λκ(Ω)
θ

max
s=1

max
ξ∈Ω

∣∣∣∣D2Gs

(
ξ,

∫
Ω

fs(ξ, y, φ
∗
t (y) dy

)∣∣∣∣ γ∗B1
(ρ);268

269

note here that Γ1
0 ∈ N. Moreover, for arbitrary x, x̄ ∈ Ω we obtain

|Vt(x)− Vt(x̄)|
(2.2)

≤
∫

Ω

|ft(x, y, u(y))− ft(x̄, y, u(y))| dy ≤ λκ(Ω)γ̃(|x− x̄|)

and consequently by the triangle inequality270

271

|Ft(u)(x)− Ft(u)(x̄)|272

≤ |Gt(x, Vt(x))−Gt(x̄, Vt(x))|+ |Gt(x̄, Vt(x))−Gt(x̄, Vt(x̄))|273

(2.15)

≤ Γ1
B2

(|x− x̄|) + Γ2
B2

(|Vt(x)− Vt(x̄)|) ≤ ω̄(|x− x̄| ,Ft(u)).274275

Here, the function ω̄(ρ,Ft(u)) := Γ1
B2

(ρ) + Γ2
B2

(λκ(Ω)γ̃(ρ)) clearly majorizes the par-276

tial moduli of continuity for Ft(u) and (2.12) implies for each n ∈ N that277

(2.17) ‖εnt (u)‖ ≤
κ∑
i=1

ωi
(
bi−ai
n ,Ft(u)

)
≤

κ∑
i=1

(
Γ1
B2

( bi−ain ) + Γ2
B2

(λκ(Ω)γ̃( bi−ain ))
)
.278
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This leads to the bounded convergence of (In)n∈N. If u ∈ Bρ0(φ∗t ) holds, then279

|Vt(x)− V ∗t (x)| ≤
∫

Ω

|ft(x, y, u(y))− ft(x, y, φ∗t (y))| dy

≤ λκ(Ω)γ̃0(‖u− φ∗t ‖)
(2.18)280

and furthermore for every n ∈ N one has281

282

|[DFnt (u)v −DFnt (φ∗t )v](x)| (2.14)
= |Pn[DFt(u)v −DFt(φ

∗
t )v](x)|283

(2.11)

≤ |[DFt(u)v −DFt(φ
∗
t )v](x)|284

(2.16)

≤

∣∣∣∣∣Ft(x)

∫
Ω

D3ft(x, y, u(y))v(y) dy285

−D2Gt(x, V
∗
t (x))

∫
Ω

D3ft(x, y, φ
∗
t (y))v(y) dy

∣∣∣∣∣286

≤
∣∣∣∣Ft(x)

∫
Ω

(
D3ft(x, y, u(y))−D3ft(x, y, φ

∗
t (y))

)
v(y) dy

∣∣∣∣287

+

∣∣∣∣(Ft(x)−D2Gt(x, V
∗
t (x)))

∫
Ω

D3ft(x, y, φ
∗
t (y))v(y) dy

∣∣∣∣288

≤ max
ξ∈Ω
|Ft(ξ)|

∫
Ω

|D3ft(x, y, u(y))−D3ft(x, y, φ
∗
t (y))| dy289

+

∥∥∥∥∫
Ω

|D3ft(·, y, φ∗t (y))| dy

∥∥∥∥ |Ft(x)−D2Gt(x, V
∗
t (x))|290

≤ λκ(Ω) max
ξ∈Ω
|Ft(ξ)| γ̃1(‖u− φ∗t ‖)291

+

∥∥∥∥∫
Ω

|D3ft(·, y, φ∗t (y))| dy

∥∥∥∥ Γ̃(|Vt(x)− V ∗t (x)|)292

(2.18)

≤ λκ(Ω) max
ξ∈Ω
|Ft(ξ)| γ̃1(‖u− φ∗t ‖)293

+

∥∥∥∥∫
Ω

|D3ft(·, y, φ∗t (y))| dy

∥∥∥∥ Γ̃(λκ(Ω)γ̃0(‖u− φ∗t ‖)) for all x ∈ Ω.294
295

After passing to the supremum over x ∈ Ω, the inequality (2.5) is valid with296

γ1(ρ) := λκ(Ω)
θ

max
s=1

max
ξ∈Ω
|Fs(ξ)| γ̃1(ρ)297

+
θ

max
s=1

∥∥∥∥∫
Ω

|D3fs(·, y, φ∗s(y))| dy

∥∥∥∥ Γ̃(λκ(Ω)γ̃0(ρ));298
299

note again that γ1 ∈ N.300

It remains to determine a function Γ0
0 yielding the convergence rates in (2.6),301

which depend on the respective smoothness properties of Ft(u).302

(a) The estimate (2.17) allows us to define the function

Γ0
0(ρ) :=

θ
max
s=1

κ∑
i=1

ωi
(
(bi − ai)ρ,Fs(φ∗s)

)
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in order to fulfill (2.4), when Ft(φ
∗
t ) is merely continuous.303

(b) For m = 1 we derive from (P2) that Ft(φ
∗
t ) ∈ C1(Ω,Rd) holds. Hence,

applying the interpolation estimate (2.12) for j = 1 leads to

‖εnt (φ∗t )‖ ≤
κ∑
i=1

bi−ai
n ωi

(
bi−ai
n , Di(Ft(φ

∗
t ))
)
.

Thus, the inequality (2.4) will be satisfied, if we choose

Γ0
0(ρ) := ρ

θ
max
s=1

κ∑
i=1

(bi − ai)ωi
(
(bi − ai)ρ,Di(Fs(φ

∗
s))
)
.

(c) For m = 2 we obtain from (P2) that Ft(φ
∗
t ) is twice continuously differentiable.

We deduce the error ‖εnt (φ∗t )‖ ≤ 1
8n2

∑κ
i=1(bi − ai)2

∥∥D2
i (Ft(φ

∗
t ))
∥∥ for all n ∈ N from

(2.13), and therefore (2.4) holds for the function

Γ0
0(ρ) :=

ρ2

8

κ∑
i=1

(bi − ai)2 θ
max
s=1

∥∥D2
i (Fs(φ

∗
s))
∥∥ .

ad (v): Because of (2.15) the Urysohn operator Ut is globally bounded. Since Gt304

is bounded due to [10, Thm. B.1], we obtain that Ft = Gt ◦ Ut is globally bounded.305

Referring to (2.11) it follows that Fnt = PnFt is globally bounded uniformly in n ∈ N.306

This carries over to the general solutions ϕn for all n ∈ N0.307

Whence, the proof is concluded.308

2.2. Simulations. For convenience, let us restrict to interval domains Ω = [a, b]309

with reals a < b, i.e. κ = 1, and scalar IDEs310

(2.19) ut+1(x) = Gt

(
x,

∫ b

a

ft(x, y, ut(y)) dy

)
for all x ∈ [a, b].311

We apply piecewise linear collocation based on the hat functions e0, . . . , en : [a, b]→ R312

(from above) with uniformly distributed nodes ηnj := a+ j b−an , 0 ≤ j ≤ n and n ∈ N.313

This yields a semi-discretization (2.14). In order to arrive at full discretizations, the314

remaining integrals are approximated by the trapezoidal rule315

(2.20)

∫ b

a

u(y) dy = b−a
2n

(
u(a) + 2

n−1∑
j=1

u(ηnj ) + u(b)
)
− (b−a)3

12n2 u′′(ξ)316

with some intermediate ξ ∈ [a, b]. This leads to an explicit recursion317

(2.21) υt+1 = F̂nt (υt)318

in Rn+1, with general solution ϕ̂n and whose right-hand side reads as

F̂nt (υ) :=

(
Gt

(
ηi,

b−a
2n

(
ft (ηi, a, υ(0))+2

n−1∑
j=1

ft
(
ηi, η

n
j , υ(j)

)
+ft (ηi, b, υ(n))

)))n
i=0

.

Then the coordinates υt(i) approximate the solution values ut(ηi). As error between
the (globally attractive) θ-periodic solutions φ∗ of (2.19) and υn to (2.21) we consider

err(n) :=
1

n

θ−1∑
t=0

n∑
j=0

∣∣φ∗t (ηnj )− υnt (j)
∣∣ .
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The θ-periodic solutions of (2.21) are computed from the system of θ equations

υ0 = F̂nθ−1(υθ−1), υ1 = F̂n0 (υ0), υ2 = F̂n1 (υ1), . . . , υθ−1 = F̂nθ−2(υθ−2)

using inexact Newton-Armijo iteration implemented in the solver nsoli from [6].319

Example 2.7. Let Ω = [0, 1] and α ∈ R, c ∈ R+. We consider an autonomous320

IDE (2.19) (that is θ = 1) with U1
t = U2

t = R,321

ft(x, y, z) :=
α

1 + x+ z2
,322

Gt(x, z) := z +
1

c+ x
+

α

1 + x

(
arctan((1 + c)

√
1 + x)− arctan(c

√
1 + x)√

1 + x
− 1

)
323
324

and the constant solution φ∗(x) = 1
c+x . The mean value theorem leads to the Lipschitz

estimate lipFt ≤ 3
√

3
8 |α|. For α = 3

2 , c = 1
5 the right-hand side of (2.19) is contractive

and the fixed-point u∗n of (In) can be approximated by iteration. Choosing the initial
function u0(x) := x the temporal evolution of the error

errn(t) :=
1

n

n∑
j=0

∣∣ϕ̂n(t; 0, u0)(j)− φ∗(ηnj )
∣∣

is shown in Fig. 1 (left) for n ∈
{

101, 102, 103
}

; it becomes stationary after a modest325

number of iterations. The limit is denoted by φn and is a fixed-point of (In). From326

Fig. 1 (left) we deduce that 20 iterates yield a good approximation. The error err(n)327

between υn and φ∗ as function of the discretization parameter n is illustrated in Fig. 1328

(right). The slope of the curve in this diagram has the value −2.001, which confirms329

the quadratic convergence of piecewise linear collocation stated in (2.13).
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Fig. 1. Quadratically decaying errors in Exam. 2.7

330

While the right-hand side in Exam. 2.7 was arbitrarily smooth, we next discuss a less331

smooth example, being only Hölder (with exponent 1
2 ) in x:332

Example 2.8. Let Ω = [0, 1], α ∈ R. We anew study an autonomous IDE (2.19)333

with U1
t = U2

t = R,334

ft(x, y, z) := α

√
x+ y

1 + x+ z2
, Gt(x, z) := z +

√
x− α

(
1 + (1 + x−

√
x) ln

1 + x

2 + x

)
335
336
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and the constant solution φ∗(x) ≡
√
x. In order to derive a Lipschitz estimate for the

right-hand side of (2.19) we obtain from the mean value theorem∣∣∣ √x+y
1+x+z2 −

√
x+y

1+x+z̄2

∣∣∣ ≤ 3
√

3(
√
x+y)

8
√

1+x
3 |z − z̄| for all z, z̄ ∈ R,

consequently for every u, ū ∈ C[0, 1] it results337

338

|F(u)(x)− F(ū)(x)| ≤ |α|
∫ 1

0

3
√

3(
√
x+y)

8
√

1+x
3 dy ‖u− ū‖339

≤ |α| 3
√

3
16 max

x∈[0,1]

2
√
x+1√

1+x
3 ‖u− ū‖ =

2
√

2(4+
√

2(25−3
√

41))√
19−
√

41
3 |α| ‖u− ū‖340

341

and thus lipF ≤ 0.47 |α|. For α = 2 the IDE (2.19) is contractive and the fixed-point342

u∗n of (In) can be approximated by iteration. Using u0(x) := x as initial function, the343

temporal evolution of the error errn(t) is shown in Fig. 2 (left) for n ∈
{

101, 102, 103
}

344

and becomes stationary after 80 iterations, while the dependence of err(n) is illustrated345

in Fig. 2 (right). The slope of the curve in this diagram has the value −2.003 yielding346

quadratic convergence, although the right-hand side is not of class C2 in x anymore.
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Fig. 2. Quadratically decaying errors in Exam. 2.8

347

Comparing Exam. 2.7 and 2.8 it is apparent that, although the same convergence rate348

is reached, iteration in the less smooth Exam. 2.8 needs longer to become stationary.349

The following example is less academic and mimics biological models for species,
which first disperse spatially and then grow. Here, explicit solutions are not known
and in order to determine the convergence rate γ, we use an asymptotic formula∥∥φn − φ2n

∥∥
‖φ2n − φ4n‖

=

K
nγ −

K
(2n)γ +O(n−(γ+1))

K
(2n)γ −

K
(4n)γ +O(n−(γ+1))

=
1− 2−γ +O( 1

n )

2−γ − 2−2γ +O( 1
n )

= 2γ +O( 1
n )

(as n → ∞), relating the globally attractive θ-periodic solutions φn to (In). After a
full discretization, the corresponding solutions υn and υ2n are provided on different
grids. To handle this, we compute the piecewise linear approximation φ̂n : [a, b]→ R
obtained from the values υn and work with the approximation

∥∥φn − φ2n
∥∥ ≈ 1

2n

θ−1∑
i=0

2n−1∑
j=0

∣∣∣υ2n
t (j)− φ̂nt (η2n

j )
∣∣∣

This manuscript is for review purposes only.



14 CHRISTIAN PÖTZSCHE

kernel kα(x) r∗1 r1

Gauß α√
π
e−α

2x2

1.32 1.31

Laplace α
2 e
−α|x| 1.43 1.42

Table 1
Typical convolution kernels and critical parameter values in Exam. 2.9 and 3.2

in order to obtain convergence rates. In conclusion, our indicator for convergence350

rates is the limit of c(n) := log2
‖φn−φ2n‖
‖φ2n−φ4n‖ for large values of n.351

Example 2.9 (periodic Beverton-Holt equation). Let Ω = [−2, 2] and consider352

the 4-periodic sequence αt := 5+4 sin πt
2 . We study the spatial Beverton-Holt equation353

(2.22) ut+1(x) = r
(2− 3

2 cos x2 )
∫ 2

−2
kαt(x− y)ut(y) dy

1 +
∣∣∣∫ 2

−2
kαt(x− y)ut(y) dy

∣∣∣ for all x ∈ [−2, 2],354

which is of the form (1.1) with Gt(x, z) := r
(2− 3

2 cos
x
2 )z

1+|z| , ft(x, y, z) := kαt(x−y)z and355

U1
t = U2

t = R, where kα : R → R is a dispersal kernel from Tab. 1. The growth rate356

r > 0 is interpreted as bifurcation parameter and the trivial solution of (2.22) exhibits357

a transcritical bifurcation for some critical r∗1 > 0. If we choose r = 4, then Fig. 3358

shows the 4-periodic orbits {φ∗0, φ∗1, φ∗2, φ∗3} for the Gauß- (left) and Laplace-kernel359

(right). The table in Fig. 4 (left) indicates quadratic convergence of the scheme and
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Fig. 3. For Exam. 2.9 with r = 4: Attractive 4-periodic solutions of the Beverton-Holt IDE
(3.8) with 4-periodic dispersal rates (αt)t∈Z: Gauß kernel (left) and Laplace kernel (right)

360
thus confirms our theoretical result from Prop. 2.3(c). Moreover, the smooth Gauß361

kernel yields more accurate results than the Laplace kernel (see Fig. 4 (right)), which362

is not differentiable along the diagonal.363

3. Hammerstein integrodifference equations. This section deals with sys-364

tems of d Hammerstein IDEs, which often arise in applications [7]. Their right-hand365

side reads as366

(3.1) Ft(u) :=

∫ b

a

Kt(·, y)gt(y, u(y)) dy + ht,367
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n Gauß Laplace
16 3.401293516 1.697576232
32 2.010916523 1.945062175
64 2.019632435 2.000945171

128 2.013192291 2.006543793
256 2.007446186 2.005257811
512 2.003910442 2.003008231

1024 2.002006939 2.001654344
2048 2.001024625 2.000882723
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Fig. 4. For Exam. 2.9 with r = 4: Approximations to the convergence rates c(n) (left) and
development of the error

∥∥φ2n − φn∥∥ (right) for n ∈
{

22, . . . , 211
}

where we restrict to domains Ω = [a, b] for simplicity. Higher-dimensional domains Ω368

can be investigated like the rectangle Ω in Sect. 2.369

For kernels Kt : [a, b]2 → Rd×p, growth functions gt : [a, b] × U1
t → Rp and370

inhomogeneities ht : [a, b]→ Rd we assume that there exists a period θ ∈ N such that371

Kt = Kt+θ, gt = gt+θ and ht = ht+θ, t ∈ Z.372

Furthermore, let us impose the following standing assumptions for all s ∈ Z:373

• Ks is of class C2 and hs ∈ C2[a, b]d,374

• U1
s ⊆ Rd is open, convex and nonempty, gs : [a, b] × U1

s → Rp is a continu-
ous function, the derivative D2gs : [a, b] × U1

s → Rp×d exists as continuous
function and for all ε > 0, x ∈ [a, b] there exists a δ > 0 such that

|z1 − z2| < δ ⇒ |D2gs(x, z1)−D2gs(x, z2)| < ε for all z1, z2 ∈ U1
s .

Since Hammerstein eqns. (I0) are a special case of the IDEs studied in Sect. 2 with375

U2
s = Rd, Gs(x, z) := z + hs(x), fs(x, y, z) := Ks(x, y)gs(y, z)376377

and convex domains Us := C([a, b], U1
s ), s ∈ Z, this guarantees the properties (P1–P3)

of their general solution ϕ0 (cf. [10, Sect. 3.2]). In particular, the compact Fréchet
derivative of Fs is

DFs(u)v =

∫ b

a

Ks(·, y)D2gs(y, u(y))v(y) dy for all u ∈ Us, v ∈ Cd.

Formally, a degenerate kernel discretization of (3.1) is given as378

(3.2) Fnt (u) :=

∫ b

a

Kn
t (·, y)gt(y, u(y)) dy + ht,379

where Kn
t : [a, b]2 → Rd×p serves as approximation of the original kernel Kt. In the380

following we discuss two possibilities, in which ej := e1
j : [a, b]→ [0, 1] denote the hat381

functions introduced in Sect. 2.1 with notes ξj := a+ j
n (b− a) for 0 ≤ j ≤ n.382

3.1. Linear degenerate kernels. A piecewise linear approximation of Kt(·, y),
y ∈ [a, b] fixed, yields the degenerate kernels

Kn
t (x, y) :=

n∑
i=0

Kt(ξi, y)ej(x) for all n ∈ N, x, y ∈ [a, b].
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The resulting discretization (3.2) essentially coincides with the collocation method383

discussed in Sect. 2.1. In fact, applying the projection operator Pn ∈ L(Cd) onto384

span {e0, . . . , en} to the right-hand side (3.1) yields Fnt (u) = PnFt(u) + ht − Pnht.385

Thus, apart from an occurrence of the term ht − Pnht, the convergence analysis is386

covered by Prop. 2.3.387

3.2. Bilinear degenerate kernels. In order to obtain an alternative semi-
discretization (In) of the Hammerstein IDE (I0), we apply the degenerate kernels

Kn
t (x, y) :=

n∑
j1=0

n∑
j2=0

ej2(y)Kt(ξj1 , ξj2)ej1(x) for all n ∈ N, x, y ∈ [a, b];

this yields a piecewise linear approximation of Kt. Since the kernels were assumed to388

be of class C2, the interpolation estimate [3, p. 267] applies to each matrix entry and389

using the matrix norm induced by the maximum vector norm, leads to390

|Kn
t (x, y)−Kt(x, y)| = d

max
j1=1

p∑
j2=1

|Kn
t (x, y)j1j2 −Kt(x, y)j1j2 |391

≤ (b− a)2

8n2

d
max
j1=1

p∑
j2=1

2∑
l=1

∥∥D2
lKt(·)j1j2

∥∥ for all x, y ∈ [a, b].(3.3)392

393

We arrive at the semi-discretization (In) with right-hand sides394

(3.4) Fnt (u) :=

n∑
i1=0

(
n∑

i2=0

∫ b

a

ei2(y)Kt(xi1 , xi2)gt(y, ut(y)) dy

)
ei1 + ht395

and the subsequent persistence and convergence result:396

Proposition 3.1 (bilinear degenerate kernel). Suppose that a θ-periodic solu-397

tion φ∗ of a Hammerstein IDE (I0) with right-hand side (3.1) satisfies the assumptions398

(i–ii) of Thm. 2.1 and choose q ∈ (q0, 1). If there exists a399

(idg) ρ0 > 0 and a function γ̃1 ∈ N∗ such that for all y ∈ [a, b] holds400

(3.5) |D2gs(y, z)−D2gs(y, z̄)| ≤ γ̃1(|z − z̄|) for all z, z̄ ∈ Bρ0(φ∗s(y)),401

(iidg) C ≥ 0 such that |gs(y, z)| ≤ C for all y ∈ [a, b], z ∈ U1
s402

and each 1 ≤ s ≤ θ, then there exists a N ∈ N so that every degenerate kernel
discretization (In) with right-hand side (3.4) and n ≥ N possesses a globally attractive
θ-periodic solution φn. Moreover, there is a K̃ ≥ 1 such that for all n ≥ N the
following holds:

‖φnt − φ∗t ‖ ≤
K̃

(1− q)n2
for all t ∈ Z.

We point out that Rem. 2.5 and 2.6 also apply in the present situation.403

Proof. Let n ∈ N. Before gradually verifying the assumptions of Thm. 2.1 applied
to the right-hand sides (3.1) and (3.4), we begin with a convenient abbreviation

et :=
(b− a)2

8

d
max
j1=1

p∑
j2=1

2∑
l=1

∥∥D2
lKt(·)j1j2

∥∥ for all t ∈ Z
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and an elementary estimate404

|Kn
t (x, y)| ≤ |Kt(x, y)|+ |Kn

t (x, y)−Kt(x, y)|
(3.3)

≤ ‖Kt‖+
et
n2

=: Ct(n)(3.6)405
406

for all t ∈ Z and x, y ∈ [a, b]. Clearly, the constants Ct(n) are nonincreasing in n ∈ N.407

First, θ-periodicity of Kt, gt and ht extends to Fnt . For t ∈ Z, u ∈ Ut fixed and408

v ∈ Cd with ‖v‖ = 1, we obtain the local discretization error409

|εnt (u)(x)|
(3.4)

≤
∫ b

a

|Kt(x, y)−Kn
t (x, y)| |gt(y, u(y))| dy410

(3.3)

≤ et
n2

∫ b

a

|gt(y, u(y))| dy for all x ∈ [a, b].411

Second, from [10, Thm. 3.5(b)] we see that every Fnt is continuously differentiable and412

|[Dεnt (u)v](x)| ≤
∫ b

a

|Kt(x, y)−Kn
t (x, y)| |D2gt(y, u(y))v(y)| dy413

(3.3)

≤ et
n2

∫ b

a

|D2gt(y, u(y))| dy for all x ∈ [a, b].414

Passing to the supremum over x ∈ [a, b] in the previous two estimates leads to415

(3.7)
∥∥Djεnt (u)

∥∥ ≤ et
n2

∫ b

a

∣∣∣Dj
2gt(y, u(y))

∣∣∣ dy for all j ∈ {0, 1} .416

Among the several consequences of this error estimate (3.7), we initially note that,417

because the substitution operator induced by the continuous function gt is bounded,418

it follows from [10, Thm. B.1] that (In)n∈N is bounded convergent.419

ad (iii): It results using [10, Thm. 3.5] that all semi-discretizations Fnt are com-
pletely continuous. The estimate (3.7) for j = 1 readily yields (2.3). Thanks to

DFnt (u)v =

∫ b

a

Kn
t (·, y)D2gt(y, u(y))v(y) dy

it results

‖DFnt (u)‖
(3.6)

≤ Ct(n)

∫ b

a

|D2gt(y, u(y))| dy,

from which we furthermore observe that DFnt are bounded uniformly in n ∈ N,420

because of Ct(n) ≤ C1(1). Moreover, (3.7) for j = 0 implies limn→∞ ‖εnt (u)‖ = 0.421

ad (iv): Again keeping an eye on the estimate (3.7), one can define

Γj0(ρ) := ρ2 θ
max
s=1

es

∫ b

a

∣∣∣Dj
2gs(y, φ

∗
s(y))

∣∣∣ dy for all j ∈ {0, 1}

and consequently (2.4) holds. Moreover, given u ∈ Bρ0(φ∗t ), the estimate422

423

|[DFnt (u)v −DFnt (φ∗t )v](x)|424

≤
∫ b

a

|Kn
t (x, y)| |D2gt(y, u(y))−D2gt(y, φ

∗
t (y))| |v(y)| dy425
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(3.6)

≤ Ct(n)

∫ b

a

|D2gt(y, u(y))−D2gt(y, φ
∗
t (y))| dy426

(3.5)

≤ (b− a)Ct(n)γ̃1(‖u− φ∗t ‖) for all x ∈ [a, b],427428

after passing to the supremum over x ∈ [a, b], allows us to choose

γ1(ρ) := (b− a)γ̃1(ρ)
θ

max
s=1

Cs(1)

in the final required inequality (2.5).429

ad (v): The boundedness assumption (iidg) implies that both Ft, as well as the430

semi-discretizations Fnt are globally bounded uniformly in n ∈ N. This evidently431

extends to the general solutions ϕn for all n ∈ N0 and the proof is finished.432

3.3. Simulations. Consider a scalar Hammerstein IDE433

(3.8) ut+1(x) =

∫ b

a

kαt(x− y)g(ut(y)) dy for all x ∈ [a, b]434

with convolution kernels kα : R → R (see Tab. 1) depending on dispersal parameter435

αt > 0 and a (nonlinear) growth function g : R→ R.436

The degenerate kernel semi-discretization (3.4) of (3.8) simplifies to437

ut+1 =

n∑
j1=0

 n∑
j2=0

kαt(η
n
j1 − η

n
j2)

∫ b

a

ej2(y)g(ut(y)) dy

 ej1 , ηnj := a+ j b−an .438

439

If we discretize the remaining integrals by the trapezoidal rule (2.20), then the full
discretization (2.21) has the right-hand side

F̂nt (υ) :=
b− a
2n

(
kαt(η

n
i −a)g(υ(0))+2

n−1∑
j=1

kαt(η
n
i −ηnj )g(υ(j))+kαt(η

n
i −b)g(υ(n))

)n
i=0

.

Here, the values υt(i) approximate ut(ηi) for 0 ≤ i ≤ n.440

We now consider a situation dual to Exam. 2.9 in the sense that (3.8) models441

populations which first grow and then disperse.442

Example 3.2 (periodic Beverton-Holt equation). On Ω = [−2, 2] we study the443

Beverton-Holt function g(z) := r
(2− 3

2 cos
x
2 )z

1+|z| to describe growth and use the 4-periodic444

sequence (αt)t∈Z from Exam. 2.9 as dispersal parameters. Again the growth rate445

r > 0 is interpreted as bifurcation parameter. The trivial solution of (3.8) exhibits a446

transcritical bifurcation for some critical r1 > 0. Due to [2, Thm. 5.1] the nontrivial447

4-periodic solution φ∗ is globally attractive for r > r1. In particular for r = 4, Fig. 5448

illustrates the orbit {φ∗0, φ∗1, φ∗2, φ∗3}. As theoretically predicted by Prop. 3.1, quadratic449

convergence is confirmed by the table in Fig. 6 (left). Again, the errors c(n) for the450

smooth Gauß kernel are smaller than for the Laplace kernel (see Fig. 5 (right)).451

Appendix A. Robustness of global stability. Assume U ⊆ X is a nonempty,452

open, convex subset of a Banach space X and (Λ, d) denotes a metric space. The453

subsequent result is a quantitative version of [13, Thm. 2.1]:454
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Fig. 5. For Exam. 3.2 with r = 4: Globally attractive 4-periodic solutions of the Beverton-Holt
IDE (3.8) with 4-periodic dispersal rates (αt)t∈Z: Gauß kernel (left) and Laplace kernel (right)

n Gauß Laplace
16 4.094543296 1.96612629
32 1.993927677 2.006424007
64 2.018281087 2.013700027

128 2.012291764 2.009501587
256 2.006785445 2.005516125
512 2.003552025 2.002888726

1024 2.001813352 2.001476866
2048 2.000915199 2.000748714
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Fig. 6. For Exam. 3.2 with r = 4: Approximations to the convergence rates c(n) (left) and
development of the error

∥∥φ2n − φn∥∥ (right) for n ∈
{

22, . . . , 211
}

Theorem A.1. Let q ∈ [0, 1), λ0 ∈ Λ and assume that Γ0 ∈ N, γ0 : R2
+ → R+455

are functions with limρ1,ρ2↘0 γ0(ρ1, ρ2) = 0. If the C1-mappings Πλ : U → U , λ ∈ Λ,456

satisfy the following properties457

(i’) there exists a u0 ∈ U with lims→∞Πs
λ0

(u) = u0 for all u ∈ U ,458

(ii’) (u, λ) 7→ DΠλ(u) exists as continuous function with ‖DΠλ0
(u0)‖ ≤ q,459

(iii’) there exists a ρ0 > 0 such that for all u ∈ Bρ0(u0) ∩ U , λ ∈ Λ it holds460

‖Πλ(u0)−Πλ0
(u0)‖ ≤ Γ0(d(λ, λ0)),(A.1)461

‖DΠλ(u)−DΠλ0
(u0)‖ ≤ γ0(‖u− u0‖ , d(λ, λ0)),(A.2)462463

(iv’) for every λ ∈ Λ there is a set B̃λ ⊂ U such that for each u ∈ U , there exists464

a T ∈ N such that ΠT
λ (u) ∈ B̃λ,465

(v’)
⋃
λ∈Λ Πλ(B̃λ) is relatively compact in U466

and ρ ∈ (0, ρ0), δ > 0 are chosen so small that B̄ρ(u0) ⊂ U ,467

Γ0(δ) ≤ 1−q
2 ρ, γ0(ρ, δ) ≤ 1−q

2 ,(A.3)468469

then there exists a continuous mapping u∗ : Bδ(λ0)→ B̄ρ(u0) with470

(a) u∗(λ0) = u0 and Πλ(u∗(λ)) ≡ u∗(λ) on Bδ(λ0),471

(b) ‖u∗(λ)− u0‖ ≤ 2
1−qΓ0(d(λ, λ0)),472
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(c) limt→∞Πt
λ(u) = u∗(λ) for all u ∈ U , λ ∈ Bδ(λ0).473

Proof. (a) For all u ∈ B̄ρ(u0), λ ∈ Bδ(λ0) one concludes the relation

‖DΠλ(u)‖ ≤ ‖DΠλ0
(u0)‖+ ‖DΠλ(u)−DΠλ0

(u0)‖
(A.2)

≤ q + γ0(ρ, δ)
(A.3)

≤ q+1
2 < 1

from (ii’). The mean value theorem [8, p. 341, Thm. 4.2] and the convexity of U imply

‖Πλ(ū)−Πλ(u)‖ ≤
∫ 1

0

‖DΠλ(u+ ϑ(ū− u))‖ dϑ ‖u− ū‖ ≤ 1+q
2 ‖u− ū‖

for all u, ū ∈ B̄ρ(u0), λ ∈ Bδ(λ0). Referring to (i’), the continuity of Πλ0 guarantees474

that Πλ0
(u0) = u0 and thus475

‖Πλ(u)− u0‖ ≤ ‖Πλ(u)−Πλ(u0)‖+ ‖Πλ(u0)−Πλ0
(u0)‖476

(A.1)

≤ 1+q
2 ‖u− u0‖+ Γ0(d(λ, λ0))

(A.3)

≤ 1+q
2 ρ+ 1−q

2 ρ = ρ.477

The latter two estimates imply that Πλ : B̄ρ(u0) → B̄ρ(u0) is both well-defined and478

a contraction uniformly in λ ∈ Bδ(λ0). The uniform contraction principle guarantees479

that there exists a unique fixed point function u∗ : Bδ(λ0)→ B̄ρ(u0) satisfying (a).480

(b) For all λ ∈ Bδ(λ0) the estimate (b) readily results from481

‖u∗(λ)− u0‖ ≤ ‖Πλ(u∗(λ))−Πλ(u0)‖+ ‖Πλ(u0)−Πλ0
(u0)‖482

(A.1)

≤ 1+q
2 ‖u

∗(λ)− u0‖+ Γ0(d(λ, λ0)).483

(c) The global attractivity of u∗(λ) w.r.t. the mapping Πλ for λ ∈ Bδ(λ0) can be484

shown just as in [13, proof of Thm. 2.1].485
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