
UNIFORM CONVERGENCE OF NYSTRÖM
DISCRETIZATIONS ON HÖLDER SPACES

CHRISTIAN PÖTZSCHE

ABSTRACT. We establish that Nyström discretizations
of linear Fredholm integral operators on Hölder spaces con-
verge in the operator norm while preserving the consistency
order of the quadrature or cubature rule. This allows to
employ tools from classical perturbation theory, rather than
collective compactness, when studying numerical approxima-
tions of integral operators, as well as applications in for
instance the field of nonautonomous dynamical systems.

1. Introduction. The Nyström method is a classical and widely
applied scheme to discretize integral operators K defined on the space
of continuous functions, where the integral is replaced by a convergent
quadrature or cubature rule. Here the approximated operators Kn con-
verge strongly but not uniformly due to the estimate ‖K‖ ≤ ‖K−Kn‖
for all n ∈ N (e.g. [5, pp. 130–131, Lemma 4.7.6]). This led to a ver-
satile convergence theory based on collectively compact operator fam-
ilies [1], which is fully satisfactory for various tasks like solving linear
and nonlinear integral equations, or eigenvalue problems for integral
operators [1, 2, 5, 8].

Nyström methods are also convenient and thus frequently used in
simulations for integrodifference equations. These discrete-time dy-
namical systems describe the behavior of iterates of (Hammerstein)
integral operators and are popular models in theoretical ecology for
the temporal evolution and spatial dispersal of species [9]. The per-
turbation theory needed to show that integrodifference equations and
their Nyström discretizations share the same long term behavior of-
ten requires uniform convergence (at least up to the author’s present
abilities). For this reason it is a helpful observation that Nyström
approximations do converge in the operator norm, when studying in-
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tegral operators on spaces of Hölder functions, rather than merely on
the continuous functions over a compact domain (cf. Thms. 1–3). The
suitable Hölder exponent is determined by the consistency order of the
employed quadrature rule, but turns out to be of minor importance,
since various properties like the spectrum of an integral operator are
independent of the particular space (see Cor. 1). Although the prize
for this endeavor is essentially to assume smooth (cf. Rem. 1) and not
just continuous kernels, such a setting frequently holds in applications
[9, pp. 17ff].

Our central Thm. 2 is illustrated by means of a convergence result
for approximations of the dichotomy spectrum, a crucial tool in the
stability theory of nonautonomous dynamical systems [7, pp. 82–86].

Notation. Let Ω ⊂ Rκ be a nonempty compact set and K stand for
the fields R or C. We write diam Ω := supy1,y2∈Ω |y1 − y2| for the

diameter of Ω and dist(Ω, Ω̄) := supy∈Ω infx∈Ω̄ |x− y| for the Hausdorff

semidistance between Ω and a subset Ω̄ ⊆ Rκ.

Given a function u : Ω→ K, its modulus of continuity is

ω(δ, u) := sup
x,x̄∈Ω,
|x−x̄|≤δ

|u(x)− u(x̄)| .

One denotes u as α-Hölder with Hölder exponent α ∈ (0, 1], if its Hölder
constant

[u]α := sup
x,x̄∈Ω
x 6=x̄

|u(x)− u(x̄)|
|x− x̄|α

is finite. We write Cα(Ω) for the spaces of α-Hölder and C0(Ω) for the
space of continuous functions equipped with the respective norm

‖u‖α :=

{
supx∈Ω |u(x)| , α = 0,

max {supx∈Ω |u(x)| , [u]α} , α ∈ (0, 1].

The embeddings Cβ(Ω) ⊆ Cα(Ω), 0 ≤ α ≤ β ≤ 1, are continuous with

(1) [u]α ≤ (diam Ω)β−α[u]β for all u ∈ Cβ(Ω)

and compact in case α < β. Moreover, Cα(Ω) ⊆ C0(Ω), α ≤ 1,
constitutes a dense embedding and such pairs of Banach spaces are
compatible in the sense of [3, p. 49].
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2. Fredholm operators and Nyström discretizations. Let us
assume throughout that Ω1 ⊂ Rκ1 , Ω ⊂ Rκ are nonempty compact
sets. Under well-known assumptions [5, 8] on a kernel k : Ω1×Ω→ K,
the Fredholm integral operator

(2) Ku :=

∫
Ω

k(·, y)u(y) dy

defines a compact linear operator K : C0(Ω)→ C0(Ω1).

A quadrature (cubature for κ > 1) rule is a sequence of linear maps

Qn : C(Ω)→ K, Qnu :=
∑

η∈Ω(n)

wηu(η) for all n ∈ N(Qn)

determined by finite (nonempty) grids Ω(n) ⊆ Ω consisting of nodes
η ∈ Ω(n), as well as the weights wη ∈ R; note that the dependence of
wη on n ∈ N is suppressed for convenience. One denotes (Qn) as

• convergent, if limn→∞Qnu =
∫

Ω
u(y) dy holds for u ∈ C0(Ω),

• stable, if

W := sup
n∈N

Wn <∞, Wn :=
∑

η∈Ω(n)

|wη| ,(3)

• having consistency order γ ∈ (0, 1], if there exists a c0 > 0 with

(4)

∣∣∣∣∫
Ω

u(y) dy −Qnu
∣∣∣∣ ≤ c0

nγ
‖u‖γ for all u ∈ Cγ(Ω).

In our subsequent analysis the consistency order γ is not required to
be the maximal possible one for a given (Qn). Thanks to [5, p. 20,
Thm. 1.4.17], convergence implies stability.

When applying quadrature rules (Qn) to Hölder functions, their
consistency order often agrees with the Hölder exponent. For this
reason, in actual computations one can restrict to simple rules such
as listed in Tab. 1.

Example 1. Let Ω = [a, b] and ηj := a + j b−an , j ∈ Z. Both the
rectangular rule and the midpoint rule

Qnu := b−a
n

n∑
j=1

u(ηj), Qnu := b−a
n

n∑
j=1

u
(ηj−ηj−1

2

)
,
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rule Ω(n) c0
left/right rectangular {η0, . . . , ηn−1} , {η1, . . . , ηn} (b− a)1+γ

midpoint
{
η1−η0

2 , . . . , ηn−ηn−1

2

}
(b−a)1+γ

2γ

trapezoidal {η0, . . . , ηn} (b− a)1+γ

Table 1. The grids Ω(n) and the constants c0 for commonly used
quadrature rules: Left/right end rectangular, midpoint and trapezoidal
rule

resp., having constant weights b−a
n , as well as the trapezoidal rule

Qnu := b−a
2n

(
u(η0) + 2

n−1∑
j=1

u(ηj) + u(ηn)
)
,

fit in the framework of (Qn). So do their product versions for numerical
cubature. These rules are convergent with respective quadrature errors
(cf. [4, p. 52, Theorem])

(5)

∣∣∣∣∣
∫ b

a

u−Qnu

∣∣∣∣∣ ≤ (b− a)


ω
(
b−a
n , u

)
, rectangular,

ω
(
b−a
2n , u

)
, midpoint,

ω
(
b−a
n , u

)
, trapezoidal

for u ∈ C0[a, b]. Hence, for functions u ∈ Cγ [a, b] we indeed obtain the
consistency estimates (4) with rate γ and constants c0 given in Tab. 1.

A natural way to avoid the integral in (2) is to replace it by a
convergent quadrature rule (Qn) yielding the Nyström methods

(6) Knu :=
∑

η∈Ω(n)

wηk(·, η)u(η) for all n ∈ N.

Under continuity assumptions on k this yields a sequence of operators
Kn ∈ L(C(Ω), C(Ω1)) being bounded uniformly in n due to (3).

3. Uniform convergence on Hölder spaces. When restricting
K and Kn to Hölder spaces Cα(Ω), α ∈ (0, 1] the uniform convergence
of Kn to K as n→∞ can be established under justifiable assumptions.
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For this purpose, we need a quantitative version of the fact that
α-Hölder functions form an algebra.

Lemma 1 (product rule). Let α ∈ (0, 1]. If u1, u2 : Ω → K are α-
Hölder, then also their product u1u2 : Ω→ K is α-Hölder with

[u1u2]α ≤ [u1]α ‖u2‖0 + ‖u1‖0 [u2]α,(7)

‖u1u2‖α ≤ (‖u1‖0 + [u1]α) ‖u2‖α .(8)

Proof. First, we obtain from the triangle inequality

|(u1u2)(x1)− (u1u2)(x2)|
≤ |u1(x1)− u1(x2)| |u2(x1)|+ |u1(x2)| |u2(x1)− u2(x2)|
≤(‖u2‖0 [u1]α + ‖u1‖0 [u2]α

)
|x1 − x2|α for all x1, x2 ∈ Ω,

which implies that u1u2 is α-Hölder, as well as the estimate (7). Second,
the aforesaid inequality (7) furthermore guarantees

‖u1u2‖α = max {‖u1u2‖0 , [u1u2]α}
≤max {‖u1‖0 ‖u2‖0 , [u1]α ‖u2‖0 + ‖u1‖0 [u2]α}
≤max {‖u1‖0 , [u1]α + ‖u1‖0} ‖u2‖α = ([u1]α + ‖u1‖0) ‖u2‖α

and this establishes our lemma. �

The subsequent result is a specification of [5, p. 136, Thm. 4.7.15]:

Theorem 1. Let α ∈ (0, 1]. If a kernel k : Ω1 × Ω→ K satisfies

(i) k(·, y) : Ω1 → K is continuous for all y ∈ Ω,
(ii) k2 := supx∈Ω1

[k(x, ·)]α <∞,

then k is uniformly continuous and K,Kn ∈ L(Cα(Ω), C0(Ω1)), n ∈ N,
are compact. If moreover (Qn) has consistency order γ ∈ (0, α], then
for all n ∈ N the following norm estimate holds:

(9) ‖K−Kn‖L(Cγ(Ω),C0(Ω1)) ≤
c0
nγ
(
k2(diam Ω)α−γ + ‖k‖0

)
.

Proof. As preparation we show that k : Ω1 × Ω → K is continuous.
Thereto, choose (x0, y0) ∈ Ω1×Ω being the limit of a sequence of points
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(xl, yl) ∈ Ω1 × Ω, l ∈ N. Then continuity of k results from

0 ≤ |k(xl, yl)− k(x0, y0)|
≤ |k(xl, yl)− k(xl, y0)|+ |k(xl, y0)− k(x0, y0)|
(ii)

≤ k2 |yl − y0|α + |k(xl, y0)− k(x0, y0)| (i)−−−→
l→∞

0,

and since Ω1 × Ω is compact, k is uniformly continuous and bounded.
The compactness of K (and Kn) follows as in [5, p. 45, Thm. 3.2.6].

Let u ∈ Cα(Ω) and n ∈ N. By (ii) the function k(x, ·) is α-Hölder
and Lemma 1 implies k(x, ·)u(·) ∈ Cα(Ω) ⊆ Cγ(Ω) (uniformly in
x ∈ Ω1). Thanks to the inequality

|(K−Kn)u(x)|
(2)
=

∣∣∣∣∫
Ω

k(x, y)u(y) dy −Qnk(x, ·)u(·)
∣∣∣∣

(4)

≤ c0
nγ
‖k(x, ·)u(·)‖γ for all x ∈ Ω1

it remains to estimate the Hölder norm of the product k(x, ·)u(·).
Thereto, combining ‖k(x, ·)u(·)‖0 ≤ ‖k‖0 ‖u‖γ with

[k(x, ·)u(·)]γ
(7)

≤ [k(x, ·)]γ ‖u‖0 + ‖k‖0 [u]γ

(1)

≤ (diam Ω)α−γ [k(x, ·)]α ‖u‖0 + ‖k‖0 [u]γ

(ii)

≤ (k2(diam Ω)α−γ + ‖k‖0) ‖u‖γ

leads to |(K−Kn)u(x)| ≤ c0
nγ (k2(diam Ω)α−γ + ‖k‖0) ‖u‖γ for x ∈ Ω1.

Passing first to the least upper bound over x ∈ Ω1, and then over all
functions u ∈ Cγ(Ω) with ‖u‖γ ≤ 1, one arrives at (9). �

The next result addresses operators acting between Hölder spaces:

Theorem 2. Let α, β ∈ (0, 1]. If a kernel k : Ω1 × Ω→ K satisfies

(i) k1 := supy∈Ω[k(·, y)]β <∞,
(ii) k2 := supx∈Ω1

[k(x, ·)]α <∞,
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then k is min {α, β}-Hölder and K,Kn ∈ L(Cα(Ω), Cβ(Ω1)), n ∈ N,
are compact for α ≤ β. If moreover (Qn) has consistency order
γ ∈ (0, α] and

(iii) there exists a k0 ≥ 0 such that

(10) |k(x1, y1)− k(x2, y1)− [k(x1, y2)− k(x2, y2)]|

≤ k0 |x1 − x2|β |y1 − y2|α for all x1, x2 ∈ Ω1, y1, y2 ∈ Ω,

then for all n ∈ N the following norm estimate holds:

(11) ‖K−Kn‖L(Cγ(Ω),Cβ(Ω1)) ≤
c0
nγ

max{‖k‖0 + k2(diam Ω)α−γ ,

k0(diam Ω)α−γ + k1}.

Remark 1 (on assumption (iii)). (1) Using the mean value theorem
(combined with the fact that absolutely continuous or Lipschitz func-
tions are differentiable almost everywhere) several sufficient conditions
can be given such that k satisfies assumption (iii), that is the estimate
(10). Here, D1k or D2k denote the partial derivative of k w.r.t. the
first resp. second variable:

• Ω1 is convex, k(·, y) is Lipschitz for all y ∈ Ω and

k′2 := ess sup
x∈Ω1

[D1k(x, ·)]α <∞, k0 = (diam Ω1)1−βk′2,

• Ω is convex, k(x, ·) is Lipschitz for all x ∈ Ω1 and

k′1 := ess sup
y∈Ω

[D2k(·, y)]β <∞, k0 = (diam Ω)1−αk′1,

• Ω1,Ω are convex, k(·, y) is Lipschitz for all y ∈ Ω, D1k(x, ·) is
Lipschitz for almost all x ∈ Ω1 and

k′0 := ess sup
x∈Ω1,y∈Ω

|D2D1k(x, y)| <∞,

or k(x, ·) is Lipschitz for all x ∈ Ω1, D2k(·, y) is Lipschitz for
almost all y ∈ Ω and

k′0 := ess sup
x∈Ω1,y∈Ω

|D1D2k(x, y)| <∞

with k0 = (diam Ω1)1−β(diam Ω)1−αk′0.
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If the respective domains Ω1,Ω are intervals, then the above Lipschitz
assumption can be weakened to absolute continuity.

(2) Degenerate kernels k(x, y) =
∑d
j=1 bj(x)aj(y) with aj ∈ Cα(Ω),

bj ∈ Cβ(Ω1) fulfill assumption (iii), because

k(x1, y1)− k(x2, y1)− (k(x1, y2)− k(x2, y2))

=

d∑
j=1

(bj(x1)− bj(x2))(aj(y1)− aj(y2))

implies the estimate (10) with k0 =
∑d
j=1[aj ]α[bj ]β .

Proof. Since k : Ω1 ×Ω→ K is uniformly min{α, β}-Hölder in both
arguments it is min{α, β}-Hölder; hence, K,Kn ∈ L(C0(Ω), Cβ(Ω1)).
For exponents α ≤ β, the compactness of K,Kn ∈ L(Cα(Ω), Cβ(Ω1))
follows as in [5, p. 57, Rem. 3.4.13 for Ω1 = Ω]. Let x1, x2 ∈ Ω1 be
arbitrary and define the kernel function

k̃ : Ω2
1 × Ω→ K, k̃(x1, x2, y) := k(x1, y)− k(x2, y),

which by assumption (ii) is α-Hölder, and therefore also γ-Hölder in
the third argument with

[k̃(x1, x2, ·)]γ
(1)

≤ (diam Ω)α−γ [k̃(x1, x2, ·)]α
(10)

≤ (diam Ω)α−γk0 |x1 − x2|β .(12)

Moreover, the assumption (i) implies
∣∣∣k̃(x1, x2, y)

∣∣∣ ≤ k1 |x1 − x2|β for

all y ∈ Ω and therefore

(13) ‖k̃(x1, x2, ·)‖0 ≤ k1 |x1 − x2|β .

Let u ∈ Cα(Ω) ⊆ Cγ(Ω) and n ∈ N. We know from (i) that (K−Kn)u
is a β-Hölder function. Furthermore, observe that

(K−Kn)u(x1)− (K−Kn)u(x2)

=

∫
Ω

k̃(x1, x2, y)u(y) dy −Qnk̃(x1, x2, ·)u(·)
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and Lemma 1 applied to the α-Hölder functions k̃(x1, x2, ·) and u yields

that k̃(x1, x2, ·)u(·) is α-Hölder, and therefore γ-Hölder with

|(K−Kn)u(x1)− (K−Kn)u(x2)|
(4)

≤ c0
nγ

∥∥∥k̃(x1, x2, ·)u(·)
∥∥∥
γ
.

This, as in the proof of Thm. 1, implies that

|(K−Kn)u(x1)− (K−Kn)u(x2)|
(8)

≤ c0
nγ

(
[k̃(x1, x2, ·)]γ + ‖k̃(x1, x2, ·)‖0

)
‖u‖γ

(13)

≤ c0
nγ

(
[k̃(x1, x2, ·)]γ + k1 |x1 − x2|β

)
‖u‖γ

(12)

≤ c0
nγ
(
(diam Ω)α−γk0 + k1

)
‖u‖γ |x1 − x2|β

and since x1, x2 ∈ Ω1 were arbitrary, the estimate

[(K−Kn)u]β ≤
c0
nγ
(
(diam Ω)α−γk0 + k1

)
‖u‖γ

results. Combining this with (9) implies that

‖(K−Kn)u‖β = max {‖(K−Kn)u‖0 , [(K−Kn)u]β}

≤ c0
nγ

max
{
‖k‖0 + k2(diam Ω)α−γ , k0(diam Ω)α−γ + k1

}
‖u‖γ

and consequently the claimed norm estimate follows. �

Corollary 1. If the conditions of Thm. 2 are fulfilled for Ω1 = Ω and
all α = β ∈ [0, 1], then the spectra σ(K) and σ(Kn) are independent of
α.

Proof. Let α ∈ [0, 1], Ω1 := Ω, set Kα := K|Cα(Ω) and Thm. 2 yields

that Kα ∈ L(Cα(Ω)) is compact. Since the spaces Cα(Ω), C0(Ω) are
compatible and the operators Kα, K0 are consistent (see [3, p. 49]),
we conclude from [3, pp. 109–110, Thm. 4.2.15] that σ(Kα) = σ(K0),
i.e. all Kα have identical spectra. The argument for the Nyström
discretizations Kn ∈ L(Cα(Ω)), n ∈ N, is verbatim. �

For consistency rates γ < α one can dispense assumption (iii):
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Theorem 3. Let α, β ∈ (0, 1]. If a kernel k : Ω1 × Ω→ K satisfies

(i) k1 := supy∈Ω[k(·, y)]β <∞,
(ii) k2 := supx∈Ω1

[k(x, ·)]α <∞

and (Qn) has consistency order γ ∈ (0, α), then for all n ∈ N and
θ ∈

[
γ
α , 1

)
the following norm estimate holds:

‖K−Kn‖L(Cγ(Ω),C(1−θ)β(Ω1)) ≤
c0
nγ

max
{
‖k‖0 + k2(diam Ω)α−γ ,

k1

(
2(diam Ω)θα−γ

kθ2
kθ1

+ (diam Ω1)θβ
)}
.

Proof. We derive a Hölder condition for the kernel k̃ : Ω2
1 × Ω → K

from the proof of Thm. 2 and set ∆ :=
∣∣∣k̃(x1, x2, y1)− k̃(x1, x2, y2)

∣∣∣ for

x1, x2 ∈ Ω1 and y1, y2 ∈ Ω. The two estimates

∆ ≤ |k(x1, y1)− k(x2, y1)|+ |k(x1, y2)− k(x2, y2)|
(i)

≤ 2k1 |x1 − x2|β ,

∆ ≤ |k(x1, y1)− k(x1, y2)|+ |k(x2, y1)− k(x2, y2)|
(ii)

≤ 2k2 |y1 − y2|α

imply

∆ = ∆1−θ∆θ ≤ 2k1−θ
1 kθ2 |x1 − x2|(1−θ)β |y1 − y2|θα for all θ ∈ (0, 1),

which allows us to conclude

[k̃(x1, x2, ·)]θα ≤ 2k1−θ
1 kθ2 |x1 − x2|(1−θ)β for all θ ∈ (0, 1).

Referring to the proofs of Thm. 1 and 2, if γ ≤ θα holds, then

|(K−Kn)u(x1)− (K−Kn)u(x2)|
(13)

≤ c0
nγ

(
[k̃(x1, x2, ·)]γ + k1 |x1 − x2|β

)
‖u‖γ

(1)

≤ c0
nγ

(
(diam Ω)θα−γ [k̃(x1, x2, ·)]θα + k1 |x1 − x2|β

)
‖u‖γ

≤ c0
nγ

(
2(diam Ω)θα−γk1−θ

1 kθ2 |x1 − x2|(1−θ)β + k1 |x1 − x2|β
)
‖u‖γ

≤ c0
nγ
(
2(diam Ω)θα−γk1−θ

1 kθ2 + k1(diam Ω1)θβ
)
|x1 − x2|(1−θ)β ‖u‖γ
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and since x1, x2 ∈ Ω1 were arbitrary, finally

[(K−Kn)u](1−θ)β ≤
c0k1

nγ

(
2(diam Ω)θα−γ

kθ2
kθ1

+ (diam Ω1)θβ
)
‖u‖γ

results. This implies that

‖(K−Kn)u‖(1−θ)β = max
{
‖(K−Kn)u‖0 , [(K−Kn)u](1−θ)β

}
≤max

{
‖(K−Kn)u‖0 , c0k1

2(diam Ω)θα−γk−θ1 kθ2+(diam Ω1)θβ

nγ

}
‖u‖γ

and combined with (9) follows the claimed norm estimate. �

4. An application to nonautonomous dynamics. Let Ω ⊂ Rκ
be nonempty, compact, convex and Ω̃ := {x− y ∈ Rκ : x, y ∈ Ω}. Sup-

pose that ct ∈ C2(Ω̃), t ∈ Z, describes a sequence of convolution ker-
nels. Linearizing for instance a nonautonomous Ricker integrodifference
equation (cf. [9])

(14) ut+1(x) =

∫
Ω

ct(x− y)ut(y)e−ut(y) dy for all x ∈ Ω

along the trivial solution yields the linear difference equation

ut+1 = Ktut, Ktu(x) :=

∫
Ω

ct(x− y)u(y) dy(15)

in C0(Ω). Since (15) depends explicitly on time t, stability properties
cannot be concluded from the (time-variant) spectrum σ(Kt) ⊂ C
generically. Nonetheless, an appropriate substitute to infer stability
is the dichotomy spectrum Σ(K) ⊆ (0,∞) (see [6, 10]) due to the
following features:

• If Σ(K) ⊆ (0, 1), then (15) and hence the trivial solution of
(14) are uniformly exponentially stable.

• If a component of Σ(K) is contained in (1,∞), then (15) and
the zero solution of (14) are unstable.

In order to determine stability properties of (15), the spectrum Σ(K)
needs to be approximated numerically. Thereto, it is essential to
discretize the Fredholm operator in (15) e.g. using a quadrature formula
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(Qn) yielding the Nyström method

Kn
t u(x) :=

∑
η∈Ω(n)

wηct(x− η)u(η) for all x ∈ Ω

(cf. (6)). Because the dichotomy spectrum of the spatially discretized
difference equation ut+1 = Kn

t ut can be computed using methods for
finite-dimensional problems [6], it remains to establish a convergence
result relating the spectra Σ(K) and Σ(Kn).

Theorem 4. If (Qn) has consistency order α ∈ (0, 1] and the convo-

lution kernels ct ∈ C2(Ω̃) satisfy supt∈Z {‖ct‖α, ‖c′′t ‖0} <∞, then

lim
n→∞

dist(Σ(Kn),Σ(K)) = 0.

Proof. We define k(x, y) := ct(x − y). In the notation of Thm. 2
one has k1 = k2 = [ct]α ≤ c̄ := supt∈Z ‖ct‖α and Rem. 1(1) yields the
constant k0 = (diam Ω)2−2α supt∈Z ‖c′′t ‖0 in (iii). Since the dichotomy
spectrum is upper-semicontinuous [10, Cor. 4], for every given ε > 0
there exists a δ > 0 such that supt∈Z ‖Kn

t − Kt‖L(Cα(Ω)) < δ implies
the inclusion Σ(Kn) ⊆ Bε(Σ(K)). Then choosing N ∈ N so large that

‖Kn
t −Kt‖L(Cα(Ω))

(11)

≤ c0
nα

(
c̄+ max

{
c̄, (diam Ω)2−2α sup

t∈Z
‖c′′t ‖0

})
< δ

holds for n ≥ N yields dist(Σ(Kn),Σ(K)) < ε and thus the claim. �

REFERENCES

1. P.M. Anselone, Collectively compact operator approximation theory and appli-
cations to integral equations (with an appendix by J. Davis), Series in Automatic

Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971.

2. K.E. Atkinson, A survey of numerical methods for solving nonlinear integral

equations, J. Integr. Equat. Appl. 4(1) (1992), 15–46.

3. E.B. Davies, Linear operators and their spectra, University Press, Cambridge,

2007.

4. P.J. Davis, P. Rabinowitz, Methods of numerical integration (2nd ed.), Com-
puter Science and Applied Mathematics, Academic Press, San Diego etc., 1984.

5. W. Hackbusch, Integral equations – Theory and numerical treatment, Birkhäu-
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