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1 Introduction

In qualitative studies on nonlinear dynamical systems, invariant manifolds are om-
nipresent and play a crucial role in a variety of ways for local as well as global
questions: For instance, local stable and unstable manifolds dictate the saddle-
point behavior in the vicinity of hyperbolic solutions (or surfaces) of a system.
Center manifolds are a primary tool to simplify given dynamical systems in terms
of a reduction of their state space dimension (compare, e.g., the celebrated re-
duction principle of Pliss). Concerning a more global perspective, stable man-
ifolds serve as separatrix between different domains of attractions and allow a
classification of solutions with a specific asymptotic behavior. Systems with a
gradient structure possess global attractors consisting of unstable manifolds (and
equilibria). Finally, so-called inertial manifolds are global versions of the classi-
cal center-unstable manifolds and yield a global reduction principle for typically
infinite-dimensional dissipative equations.

For these reasons, the computation of invariant manifolds is a highly relevant
and interesting problem. However, although the existence of invariant manifolds is
a well-established matter in many different settings, their analytical computation
is possible only in very rare cases. Hence, one needs tools for their approxima-
tion, and at least since the 1990s, several methods have been pursued. We review
some of them with a certain focus on discrete dynamical systems: Maybe the
most self-evident (and theoretically for local questions relevant) approach is Tay-
lor approximation, for which a sufficiently general framework has been introduced
in [40]; moreover, Taylor expansions for large systems and related numerical is-
sues have been discussed in [5,14]. For global approximations, a geometrically
very intuitive approach motivated on attracting properties of unstable manifolds
was suggested in [11], based on set-oriented methods like subdivision and cell-
mapping-continuation. Clearly, the different theoretical methods for constructing
invariant manifolds imply also possibilities for their approximation. Among them
is the frequently used graph transformation due to Hadamard, on which the al-
gorithms developed in [40, Section 11], [15,6,7,38] (see [19] for an approach
using invariant foliations) are based on, where reference [38] deals with inertial
manifolds. A second method with a more functional analytical background dates
back to Lyapunov and Perron, and forms the starting point for the contributions
in [31] and [38] (inertial manifolds) – in each case an integral operator has to
be appropriately discretized. Vaguely related to this approach is the contribution
of [30], in which methods from the numerical approximation of boundary value
problems are applied to compute invariant manifolds. A third theoretical method
to construct invariant manifolds of differential equations is Sacker’s perturbation
approach based on the fact that invariant surfaces satisfy a first-order quasi-linear
PDE, the so-called invariance equation. A solution scheme for such problems has
been developed very successfully in [17]. However, for discrete problems, the in-
variance equation is a functional equation and it would be interesting to develop
an analog approach for difference equations. Finally, also [18] deals with differ-
ential equations by considering whole bundles of trajectories and describing an
algorithm to control them in order to approximate invariant manifolds. Various
illustrative examples on this extensive area can be found in the well-written and
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interesting survey paper [26], to which we also refer for a more complete overview
of the corresponding vast literature.

Being aware of these highly successful and effective methods providing a quite
global picture of invariant manifolds, our motivation for the present work is three-
fold: First, many of the methods mentioned above deal with ordinary differen-
tial equations and in order to implement an approximation scheme for invariant
manifold, one has to work with an appropriate time discretization. We deal with
time-discrete problems right from the beginning and therefore our method can
be applied to time-discrete models, as well as to discretized ODEs. Here, it is
a typical issue that difference equations are rarely global homeomorphisms on a
relevant state space, whereas numerical discretizations of ODEs are (at least for
small step-sizes). Second, in many cases, the notion of a dynamical system is not
general enough to model several real world phenomena, since it is often indicated
to assume that the underlying rules are time-dependent. In biological processes,
for instance, it is more realistic to take evolutionary adaptations into account, and
sometimes it is unavoidable to consider random perturbations such as white noise
or to model the control of a process by a human being. The appropriate class to
treat such problems are so-called nonautonomous dynamical systems. Third, we
try to reduce the smoothness assumptions on the equations under consideration.
In fact, we only need their Lipschitz continuity. Such continuous, but not differ-
entiable models occur in a variety of applications ranging from electrical circuits
to linear complementary and cone-wise linear systems (see, e.g., [22] and the ref-
erences therein).

Compared to the autonomous case, the literature on the approximation of in-
variant manifolds for nonautonomous problems is quite sparse. A local method
to obtain Taylor approximations and to apply them in critical stability and bifur-
cation problems has been developed in [35]. However, there are two obstacles in
obtaining a good, i.e., high-order Taylor approximation. First of all, the smooth-
ness of a difference equation yields an upper bound for the differentiability of the
corresponding invariant manifolds. Hence, for only Lipschitzian equations, Taylor
approximations are out of question. In addition, even for C∞-equations, the differ-
entiability of invariant manifolds also depends on the spectrum of the linear part
in terms of spectral gap conditions, and it is possible to construct invariant mani-
folds which are only C1 (cf. [32, Example 4.2]) although the equations are much
smoother. Thus, a Taylor approximation is of little use in these cases.

Set-oriented methods have been developed in [11] and were generalized to ex-
plicitly time-dependent problems in [2]. Compared to our present approach from
Section 3, we got the impression that set-oriented algorithms are more robust in the
sense that convergence is obtained on larger sets. Nevertheless, the computational
amount is smaller for our method. In addition, it directly applies to (pseudo-)stable
manifolds (without computing the inverse, which might not exist) and to implicit
difference equations as well.

This paper deals with difference equations, where the time-dependence is quite
arbitrary and not necessarily periodic or almost periodic. For readers unfamiliar
with the nonautonomous theory, we have included the corresponding existence
theorems for invariant manifolds (we call them invariant fiber bundles), as well as
the crucial steps of their construction using the Lyapunov-Perron method. Many
of the above mentioned methods to approximate invariant manifolds are strongly
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based on the autonomous invariance notion, where invariant sets are subsets of a
single state space. The corresponding nonautonomous invariance concept canoni-
cally leads to the extended state space – a vector bundle of single state spaces. For
that reason it is not straight forward to generalize various of the above methods
to the general nonautonomous situation. However, the Lyapunov-Perron approach
has a sufficiently abstract and flexible nature for two reasons:

– One can characterize the full hierarchy of invariant manifolds (or fiber bun-
dles) including strongly stable, stable, center-stable and the corresponding un-
stable manifolds.

– It is successful even for time-dependent problems.

Indeed, in Section 2, invariant manifolds of nonautonomous difference equations
are characterized as fixed points of the Lyapunov-Perron operator in an infinite-
dimensional sequence space. In Section 3, we provide an error estimate enabling
us to replace this problem with a finite-dimensional system of nonlinear equations
representing the truncated Lyapunov-Perron fixed point problem. This system can
be solved using numerical methods for systems of nonlinear algebraic equations.
We suggest and have successfully employed various Newton-like methods to com-
pute single points on the invariant manifolds. Due to the relatively high dimension
of these problems (≈ 50-100), inexact Newton-methods with an iterative solution
of the resulting linear problem in each Newton-step proved to be the most effi-
cient ones. To compute whole fibers, continuation (path-following) techniques are
appropriate. We naively implemented a classical continuation, as well as a pseudo-
arclength algorithm (cf. [1]) for that purpose. A Levenberg-Marquardt algorithm
turned out to be sufficiently robust in order to use larger step-sizes as increments
for the continuation parameter.

Finally, several examples are discussed in Section 4 of this paper. To demon-
strate the performance of our algorithms, we investigate an autonomous planar
test example where the invariant manifolds are explicitly known and, depending
on the spectrum of the linear part, are of strongly stable, stable and strongly unsta-
ble type. To further illustrate our technique we take a nonautonomous version of
a popular model from population dynamics (see [27]) and compare our approach
to set-oriented subdivision methods from [2]. The global unstable manifold of the
well-known Hénon map is approximated using pseudo-arclength continuation. As
a concluding more complex example we consider a 2-dimensional attractive in-
variant manifold of a 6-dimensional difference equation. It has been obtained as
Bubnov-Galerkin discretization of a nonautonomous Chafee-Infante PDE (a pro-
totypical nonlinear heat equation in 1d), with linearly implicit Euler discretization
in time, and is intended to approximate its inertial manifold (cf. [39, Chapter 8]).

While the paper at hand deals with difference equations, related results for
nonautonomous differential equations have been obtained in [36]. The algo-
rithms presented in [36] are essentially based on a classical fixed point iteration;
consequently, they converge only linearly. In comparison, the Newton methods
employed in the present paper converge significantly better. Hence, for higher-
dimensional differential equations (and smooth right hand sides) it might be ad-
vantageous to first discretize ODEs in time and then to apply the algorithms de-
veloped here (cf. Subsection 3.3).
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2 Difference equations and invariant fiber bundles

Throughout the paper, X is a general Banach space over the reals (K = R) or
complex numbers (K = C), equipped with norm ‖·‖, and L(X) the Banach alge-
bra of bounded linear operators. All considerations hold for infinite-dimensional
linear spaces X – understandably, until it comes to explicit implementations of
algorithms on a computer, where some prior spatial (Bubnov-Galerkin, finite dif-
ference, or finite element) discretization is needed.

A discrete interval I is the intersection of a real interval with the integers Z.
We write [τ, t]Z := [τ, t]∩Z for τ, t ∈ R, and with T ∈ (0,∞]Z, we abbreviate

I+
τ (T ) :=

{
[τ,τ +T ]Z , T < ∞,

[τ,∞)Z , T = ∞
, I−τ (T ) :=

{
[τ−T,τ]Z , T < ∞,

(−∞,τ]Z , T = ∞
.

Since our focus is on nonautonomous problems, the classical notion of a semi-
group (or dynamical system) has to be replaced by a discrete 2-parameter semi-
group, i.e., a mapping ϕ : {(t,τ,ξ ) ∈ I× I×X : τ ≤ t}→ X with the properties

ϕ(τ,τ,ξ ) = ξ , ϕ(t,s,ϕ(s,τ,ξ )) = ϕ(t,τ,ξ ) for all τ ≤ s≤ t, ξ ∈ X ; (1)

we speak of a 2-parameter group, if ϕ is defined on I× I×X and (1) holds for all
τ,s, t ∈ I. The product I×X is called extended state space and a subset S⊆ I×X
is said to be a nonautonomous set with t-fiber S(t) := {x ∈ X : (t,x) ∈ S}. Such a
nonautonomous set is called positively invariant, if ϕ(t,τ,S(τ)) ⊆ S(t) for τ ≤ t
and invariant, if equality holds in the last inclusion.

Suppose from now on that the discrete interval I is unbounded above or below.
We deal with explicit nonautonomous difference equations in semi-linear form

xt+1 = A(t)xt +F(t,xt), (2)

with functions A : I→ L(X) and F : I×X → X . For later reference, let ϕ be the
general solution of (2), recursively given as 2-parameter semigroup

ϕ(t,τ,ξ ) :=
{

ξ for t = τ

A(t−1)ϕ(t−1,τ,ξ )+F(t−1,ϕ(t−1,τ,ξ )) for t > τ
.

The following general pseudo-hyperbolic exponential dichotomy notion will
be essential for the flexibility in our approach:

Hypothesis 1 Let 0 < α+ < α−, K+,K− ≥ 1 and A : I→ L(X). We assume that
there exist sequences P−,P+ : I→ L(X) of projections with P−(t)+P+(t)≡ I on I,

A(t +1)P−(t) = P−(t)A(t) for all t ∈ I,
A(t)|R(P−(t)) : R(P−(t))→ R(P−(t +1)) is invertible for all t ∈ I, (3)

‖Φ(t,s)P+(s)‖ ≤ K+α
t−s
+ for all s≤ t,∥∥Φ̄(t,s)P−(s)

∥∥ ≤ K−α
t−s
− for all t ≤ s,

where Φ(t,s) := ∏
t−1
r=s A(r) and Φ̄(s, t) := ∏

t−1
r=s A(r)|−1

R(P−(r)) for s≤ t.
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Remark 1 In the autonomous case (i.e., A(t)≡ A0 is constant), the linearized sys-
tem (2) admits an exponential dichotomy for growth rates α+ < α−, if the modulus
of each spectral point of A0 does not lie in [α+,α−]. Similarly, if A is ω-periodic,
one has to consider spectral points of the monodromy operator Φ(ω,0).

Because of the regularity condition (3), we know for d := dimX < ∞ that the
ranks of the projection P±(t), t ∈ I, are constant, and we can define

d± := dimR(P±(t)) for all t ∈ I.

For the sake of a compact and convenient notation it is advantageous to introduce
the Green’s function for xt+1 = A(t)xt , given by

G(t,τ) :=
{
−Φ̄(t,τ)P−(τ) for t < τ

Φ(t,τ)P+(τ) for t ≥ τ
.

Having this at hand, we can establish our abstract functional analytical framework.
Given γ > 0, τ ∈ I and T ∈ (0,∞]Z such that τ−T ∈ I or τ +T ∈ I, respectively, it
is not difficult to see that the following spaces of exponentially bounded sequences

X±τ,γ(T ) :=
{

φ : I±τ (T )→ X : sup
t∈I±τ (T )

γ
τ−t ‖φ(t)‖< ∞

}
become Banach spaces w.r.t. the respective norms

‖φ‖±
τ,γ := sup

t∈I±τ (T )
γ

τ−t max{‖P−(t)φ(t)‖ ,‖P+(t)φ(t)‖} . (4)

Note that the condition supt∈I±τ (T ) γτ−t ‖φ(t)‖ < ∞ is always fulfilled for finite
values T < ∞. Hence, X±τ,γ(T ) = {φ : I±τ (T )→ X} ∼= XT+1 in this case.

Often an element φ(p) ∈ X±τ,γ(T ) depends on parameters p, and we slightly
abuse our notation by writing φ(t, p) ∈ X instead of the cumbersome φ(p)(t).
This notational simplification will be used throughout the paper.

Hypothesis 2 Let F : I×X → X be a mapping satisfying

F(t,0)≡ 0 on I (5)

and the local Lipschitz estimate

‖F(t,x)−F(t, x̄)‖ ≤ l(r)‖x− x̄‖ for all t ∈ I, x, x̄ ∈ B̄r(0), r ≥ 0,

where the function l : [0,∞]→ [0,∞] is nondecreasing.

Remark 2 The assumption (5) is legitimate in problems where the behavior near
fixed reference solutions is in the center of interest. However, in certain more
global scenarios, e.g., in the situation of slow or inertial manifolds, it is possible
to weaken (5) and replace it by a condition of the form (cf. [33,34])

sup
t∈I±τ (∞)

α
τ−t
± ‖F(t,0)‖< ∞.
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Of central importance in this section are the following discrete Lyapunov-Perron
operators T ±

T : X±τ,γ(T )×X → X±τ,γ(T ), which, for given ξ ∈ X , read as

T +
T (φ ,ξ ) = Φ(·,τ)P+(τ)ξ +

τ+T

∑
r=τ

G(·,r +1)F(r,φ(r)),

T −
T (φ ,ξ ) = Φ̄(·,τ)P−(τ)ξ +

τ−1

∑
r=τ−T

G(·,r +1)F(r,φ(r)),

respectively. Note that T = ∞ is explicitly allowed. Since the dependence of T ±
T

on τ is of minor importance in this paper, we have suppressed it. The correspond-
ing respective fixed point problems

φ = Φ(·,τ)P+(τ)ξ +
τ+T

∑
r=τ

G(·,r +1)F(r,φ(r)) in X+
τ,γ(T ), (LP+

T )

φ = Φ̄(·,τ)P−(τ)ξ +
τ−1

∑
r=τ−T

G(·,r +1)F(r,φ(r)) in X−τ,γ(T ) (LP−T )

are denoted as discrete Lyapunov-Perron equations. They are related to the dy-
namical behavior of (2) as follows:

Proposition 1 Let τ ∈ I, ξ ∈ X, γ ∈ (α+,α−) and suppose Hypotheses 1–2 hold.
If φ ∈ X±τ,γ(∞) is a sequence satisfying

l
(

supt∈I±τ (∞) ‖φ(t)‖
)

< ∞,

then the following assertions are equivalent:

(a) φ solves the nonautonomous difference equation (2) with P±(τ)φ(τ) = ξ ,
(b) φ is a fixed point of the Lyapunov-Perron equations (LP±∞ ).

Proof We restrict to the case φ ∈ X+
τ,γ(∞), since the dual situation φ ∈ X−τ,γ(∞)

can be treated similarly, and define R := supτ≤t ‖φ(t)‖. Let us consider sequences
φ±(t) := P±(t)φ(t) for t ∈ I+

τ (∞).
(a)⇒ (b) If φ solves the difference equation (2), then φ+ is a solution of the

initial value problem

xt+1 = A(t)P+(t)xt +P+(t +1)F(t,φ(t)), x(τ) = ξ (6)

and the discrete variation of constants formula yields φ+(t) = P+(t)T +
T (t,φ ,ξ )

for all t ≥ τ . Moreover, by Hypotheses 1–2 and the triangle inequality, we have

‖P−(t +1) [F(t,φ(t))]‖γ
τ−t

(5)
≤ K−l(R)‖φ(t)‖γ

τ−t ≤ 2K−l(R)‖φ‖+
τ,γ

for all τ ≤ t, and hence the inhomogeneous part of equation

xt+1 = A(t)P−(t)xt +P−(t +1)F(t,φ(t)) (7)
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is exponentially bounded. By [33, Lemma 3.1(a)] this equation admits a unique
solution φ− ∈ X+

τ,γ(∞), which additionally has the form φ−(t) = P−(t)T −
T (t,φ ,ξ )

for all τ ≤ t. Then φ = φ−+φ+ solves the fixed point problem (LP+
T ).

(b)⇒ (a) Conversely, let φ ∈ X+
τ,γ(∞) be a solution of the Lyapunov-Perron

equation (LP+
T ). Then the discrete variation of constants formula implies that φ+

is the unique forward solution of the initial value problem (6). Furthermore, also
[33, Lemma 3.1(a)] guarantees that φ− is an exponentially bounded solution of
the linear inhomogeneous system (7). �

Under stronger global conditions, we can establish the existence of unique
solutions for the Lyapunov-Perron equations:

Proposition 2 Let τ ∈ I, ξ ∈ X, T ∈ (0,∞]Z, suppose Hypotheses 1–2 hold with

` := max{K−,K+}L <
α−−α+

4
, L := `(∞) (8)

and choose σ ∈
(
`, 1

2 (α−−α+)
]
. Then, for γ ∈ [α+ +σ ,α−−σ ], the Lyapunov-

Perron equations (LP±T ) have a unique solution φ
±
T (ξ ) ∈ X±τ,γ(T ) which satisfy

∥∥φ
±
T (ξ )

∥∥±
τ,γ
≤ K±σ

σ − `
‖P±(τ)ξ‖ ,

and in addition, the sequences φ
±
T (ξ ) do not depend on γ .

In order not to overextend our notation, we also suppress the dependence of the
sequences φ

±
T (ξ ) ∈ X±τ,γ(T ) on the initial time τ ∈ I.

Proof Let τ ∈ I and ξ ∈ X . We only sketch a proof and refer to [33] for the details.
Thereto, consider the Lyapunov-Perron operator T ±

T : X±τ,γ(T )×X → X±τ,γ(T ). It
can be verified as in [33, Lemma 3.2] that T ±

T is well-defined and satisfies the
two Lipschitz estimates

Lip1 T ±
T ≤ `

σ
< 1, Lip2 T ±

T ≤ K±. (9)

From the first inequality in (9), we get that T ±
T (·,ξ ) is a contraction on X±τ,γ(T ),

uniformly in ξ , and Banach’s fixed point theorem implies that there exists a unique
fixed point φ

±
T (ξ ) ∈ X±τ,γ(T ). Moreover, the second inequality in (9) yields the

claimed bound on φ
±
T (ξ ). �

We are in the position to introduce a nonautonomous counterpart to (global)
invariant manifolds of autonomous difference equations (maps). A fiber bundle is
a nonautonomous set S, where each fiber S(t), t ∈ I, is graph of a function.

Theorem 1 (invariant fiber bundles) Assume Hypothesis 1–2 hold with (8) and
choose σ ∈

(
`, 1

2 (α−−α+)
]
. Then the following statements are true:

(a) If I is unbounded above, then the so-called pseudo-stable fiber bundle

S+ := {(τ,ξ ) ∈ I×X : ϕ(·;τ,ξ ) ∈ X+
τ,γ(∞) for γ ∈ [α+ +σ ,α−−σ ]}
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is a positively invariant fiber bundle of (2) possessing the representation

S+ =
{
(τ,ξ + s+(τ,ξ )) ∈ I×X : τ ∈ I,ξ ∈ R(P+(τ))

}
with a uniquely determined mapping s+ : I×X → X, given by

s+(τ,ξ ) = P−(τ)φ+
∞ (τ,ξ ) for all τ ∈ I, ξ ∈ X . (10)

Furthermore, s+ satisfies Lip2 s+ ≤ K−K+L
σ−` and one has s+(τ,0)≡ 0 on I.

(b) If I is unbounded below, then the so-called pseudo-unstable fiber bundle

S− :=
{

(τ,ξ ) ∈ I×X :
there exists a solution φ : I→ X of (2) with
φ(τ) = ξ and φ ∈ X−τ,γ(∞) for γ ∈ [α+ +σ ,α−−σ ]

}
is an invariant fiber bundle of (2) possessing the representation

S− =
{
(τ,η + s−(τ,η)) ∈ I×X : τ ∈ I,η ∈ R(P−(τ))

}
with a uniquely determined mapping s− : I×X → X, given by

s−(τ,η) = P+(τ)φ−∞ (τ,η) for all τ ∈ I, η ∈ X . (11)

Furthermore, s− satisfies Lip2 s− ≤ K−K+L
σ−` and one has s−(τ,0)≡ 0 on I.

Proof See [33, Theorem 3.5]. �

Remark 3 It can be shown that time-periodic difference equations (2) admit fiber
bundles S± with periodic fibers S±(t). In particular, for autonomous equations
these fibers are constant and we obtain the usual invariant manifolds.

Remark 4 Under very similar assumptions supplementing Hypothesis 2 (cf. [33,
34]) the above theorem also holds for implicit difference equations of the form

xt+1 = A(t)xt +F(t,xt ,xt+1),

which, for instance, have been obtained from fully-implicit discretizations of dif-
ferential equations. Here, S+ consists of solutions, which exist and are exponen-
tially bounded in forward time. With obvious modifications, our later tools also
work and are applicable for such problems.

The nonautonomous sets S+ and S− generalize the classical invariant manifolds
corresponding to pseudo-hyperbolic equilibria; to be more specific and to provide
a dynamic insight, S+ is called

– center-stable fiber bundle in case α− > 1; it contains solutions bounded in
forward time,

– stable fiber bundle in the hyperbolic situation α+ < 1 < α−; it contains expo-
nentially decaying forward solutions, and

– strongly stable fiber bundle in case α− < 1.

Under the assumption of I being unbounded below, S− is called

– center-unstable fiber bundle in case α+ < 1; it contains solutions which exist
and are bounded in backward time,
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– unstable fiber bundle in the hyperbolic situation α+ < 1 < α−; it contains
solutions existing and exponentially decaying in backward time; and

– strongly unstable fiber bundle in case 1 < α+.

Detached from the idea of describing dynamics near isolated solutions, the sets
S± yield the global set of all solutions with a specific boundedness behavior in
forward or backward time. Hence, in case α− < 1 one can interpret S− as discrete
inertial manifold (cf. [34]) and (8) as corresponding spectral gap condition.

3 Computation of invariant fiber bundles

The relations (10) and (11) are central for our approach to approximate the fiber
bundles S±. Indeed, in order to compute the functions s± defining S±, we solve the
Lyapunov-Perron equations (LP±T ) for T < ∞. The corresponding error estimate
for the distance between the fixed points φ

±
T (τ,ξ ) and φ±∞ (τ,ξ ) is given in

Proposition 3 Let τ ∈ I, ξ ∈ X, T ∈ N, suppose that Hypotheses 1–2 hold with
(8) and choose σ ∈

(
`, 1

2 (α−−α+)
)
. Then the function s± : I×X → X defining

the fiber bundle S± satisfies

∥∥s±(τ,ξ )−P∓(τ)φ±T (τ,ξ )
∥∥≤ σK2

∓K±L

(σ − `)2 ‖P±(τ)ξ‖
(

α+ +σ

α−−σ

)T

. (12)

Remark 5 (spectral ratio condition) Keeping in mind that ` is supposed to be
small, one can choose σ close to 0 and the decay rate α++σ

α−−σ
in (12) essentially

depends on the ratio α+
α−

. Thus, we obtain a good approximation for small values
of T > 0 in (12), provided α+

α−
� 1. In the autonomous situation, this means that

consecutive spectral points have moduli with small quotients.

Proof We only prove the assertion for s− and φ
−
T . Choose a finite integer T >

0, γ ∈ (α+ +σ ,α−−σ ], and thanks to σ < 1
2 (α−−α+), we can select a δ ∈

[α+ +σ ,γ). Let τ ∈ I, ξ ∈ X be fixed and φ
−
T ∈ X−τ,γ(T ), φ−∞ ∈ X−τ,γ(∞) be the

unique solutions of the respective Lyapunov-Perron equations (LP−T ) and (LP−∞ );
we suppressed the dependence on ξ . Then, on the finite interval [τ−T,τ]Z, one
evidently has φ

−
T ,φ−∞ |I−τ (T ) ∈ X−

τ,δ (T ), and we obtain from Proposition 2 that

∥∥P+(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥δ
τ−t ≤

∥∥∥∥∥τ−1−T

∑
r=−∞

Φ(t,r +1)P+(r +1)F(r,φ−∞ (r))

∥∥∥∥∥δ
τ−t

+

∥∥∥∥∥ t−1

∑
r=τ−T

Φ(t,r +1)P+(r +1)
[
F(r,φ−∞ (r))−F(r,φ−T (r))

]∥∥∥∥∥δ
τ−t

≤K+L
α+

τ−1−T

∑
r=−∞

α
t−r
+
∥∥φ
−
∞ (r)

∥∥δ
τ−t +

K+L
α+

t−1

∑
r=τ−T

α
t−r
+
∥∥φ
−
∞ (r)−φ

−
T (r)

∥∥δ
τ−t

≤ K+L
γ−α+

(
δ

γ

)T ∥∥φ
−
∞

∥∥−
τ,γ

+
K+L

δ −α+

∥∥φ
−
∞ −φ

−
T

∥∥−
τ,δ

for all t ∈ [τ−T,τ]Z ,



Computation of nonautonomous invariant and inertial manifolds 11

and similarly,∥∥P−(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥δ
τ−t ≤ K−L

α−−δ

∥∥φ
−
∞ −φ

−
T

∥∥−
τ,δ

for all t ∈ [τ−T,τ]Z .

By definition of the ‖·‖−
τ,δ -norm and due to γ,δ ∈ [α+ +σ ,α−−σ ], we arrive at

∥∥φ
−
T −φ

−
∞

∥∥−
τ,δ
≤ K+L

σ

(
δ

γ

)T ∥∥φ
−
∞

∥∥−
τ,δ

+
`

σ

∥∥φ
−
T −φ

−
∞

∥∥−
τ,δ

,

and consequently (note the inequality ` < σ ),

∥∥P+(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥δ
τ−t ≤

K2
+L

σ − `

(
δ

γ

)T ∥∥φ
−
∞

∥∥−
τ,γ

for all t ∈ [τ−T,τ]Z .

Therefore, the claim follows from Proposition 2, if we use (11) and set t = τ ,
δ = α+ +σ , γ = α−−σ in the above estimate. �

3.1 Computation of single points

Having these error estimates at hand, we are in a position to solve the truncated
fixed point equations (LP±T ) instead of (LP±∞ ) for some fixed T > 0. So we reduce
the infinite-dimensional problem (LP±∞ ) to a nonlinear algebraic equation.

To approximate the pseudo-unstable fiber bundle S−, we fix an initial point
ξ ∈ X and proceed with another simplification. Multiplying the Lyapunov-Perron
equation (LP−T ) with projections P+(t) and P−(t) implies

ψ
+(t) =

t−1

∑
r=τ−T

Φ(t,r +1)P+(r +1)F(r,ψ+(r)+ψ
−(r)),

ψ
−(t) = Φ̄(t,τ)P−(τ)ξ −

τ−1

∑
r=t

Φ̄(t,r +1)P−(r +1)F(r,ψ+(r)+ψ
−(r)),

respectively, where we have abbreviated ψ±(t) = P±(t)φ−T (t,ξ ). In particular, we
have the relation ψ−(τ) = P−(τ)ξ . The discrete variation of constants formula
guarantees that ψ− is a backward solution of the difference equation

xt+1 = A(t)P−(t)xt +P−(t +1)F(t,xt +ψ
+(t)),

and we simplified (LP−T ) to the following algebraic system of nonlinear equations

ψ
+(t)−

t−1

∑
r=τ−T

Φ(t,r +1)P+(r +1)F(r,ψ+(r)+ψ
−(r)) = 0

for all t ∈ [τ−T,τ]Z ,

ψ
−(t +1)−A(t)ψ−(t)−P−(t +1)F(t,ψ+(t)+ψ

−(t)) = 0
for all t ∈ [τ−T,τ−1]Z ,

ψ
−(τ) = P−(τ)ξ .

(13)
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The first equation in (13) degenerates into ψ+(τ −T ) = 0 for t = τ −T , which
causes no confusion, since (13) is used to obtain P±(t)φ−∞ (t,ξ ) only for t = τ .

Next we further transform (13) into a form more appropriate for implementa-
tion on a computer. Thereto, we suppose d := dimX < ∞ and conclude that (13)
becomes a (1 + T )d-dimensional problem. We fix τ ∈ I, choose respective bases
e+

1 , . . . ,e+
d+

of R(P+(τ)) and e−1 , . . . ,e−d− of R(P−(τ)) (note that d+ and d− are
independent of τ) and introduce scalar variables x1, . . . ,x(1+T )d according to

yn =
d+

∑
j=1

x j+d+(n−1)e
+
j = ψ

+(τ−T +n−1),

yn+T+1 =
d−

∑
j=1

x j+d−(n−1)+d+(T+1)e
−
j = ψ

−(τ−T +n−1)

for all n = 1, . . . ,T +1. With this notation we can write (13) as

yt+1+T −
t−1

∑
r=−T

Φ(t + τ,r + τ +1)P+(r + τ +1)F(r + τ,yr+T+1 + yr+2T+2) = 0

for all t ∈ [−T,0]Z ,

yt+2T+3−A(t + τ)yt+2T+2−P−(t + τ +1)F(t + τ,yt+T+1 + yt+2T+2) = 0
for all t ∈ [−T,−1]Z ,

y2T+2 = P−(τ)ξ ,

or in an even more compact notation abstractly as

G−(x,ξ ) = 0 with x ∈K(1+T )d and ξ ∈Kd− .

Each computation of G−(·,ξ ) involves T
2d (d+T +d +d−) evaluations of F .

For the corresponding dual approximation method of the pseudo-stable fiber
bundle S+, we set ψ±(t) = P±(t)φ+

T (t,ξ ), and (LP+
T ) reduces to

ψ
+(τ) = P+(τ)ξ ,

ψ
+(t +1)−A(t)ψ+(t)−P+(t +1)F(t,ψ+(t)+ψ

−(t)) = 0
for all t ∈ [τ,τ +T −1]Z ,

ψ
−(t)+

τ+T

∑
r=t

Φ(t,r +1)P−(r +1)F(r,ψ+(r)+ψ
−(r)) = 0

for all t ∈ [τ,τ +T ]Z .

(14)

With the above notation, we now introduce scalars x1, . . . ,x(1+T )d according to

yn =
d+

∑
j=1

x j+d+(n−1)e
+
j = ψ

+(τ +n−1),

yn+T+1 =
d−

∑
j=1

x j+d−(n−1)+d+(T+1)e
−
j = ψ

−(τ +n−1)
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for all n = 1, . . . ,T +1, and write (14) as

y1 = P+(τ)ξ ,

yt+1−A(t−1+ τ)yt −P+(t + τ)F(t−1+ τ,yt + yt+1+T ) = 0
for all t ∈ [1,T ]Z ,

yt+T+2 +
T

∑
r=t

Φ(t + τ,r + τ +1)P−(r + τ +1)F(r + τ,yr+1 + yr+T+2) = 0

for all t ∈ [0,T ]Z ,

which we formally also write as

G+(x,ξ ) = 0 with x ∈K(1+T )d and ξ ∈Kd+ .

Now, each computation of G+(·,ξ ) involves 1
2d [2d+T + d−(T + 1)(T + 2)] eval-

uations of the nonlinearity F .
We denote the unique solution of the nonlinear algebraic equations (13) and

(14) (cf. Proposition 2) by Ψ±∞ (ξ ), resp., and get

Algorithm 1 (approximation of s±(τ,ξ )) Choose ε > 0 and values τ ∈ I, ξ ∈
R(P±(τ)), σ ∈

(
`, 1

2 (α−−α+)
)
.

(1) Set n := 0, Ψ
±

0 := 0 and an integer T > 0 so large that

σK2
∓K±L

(σ − `)2 ‖P±(τ)ξ‖
(

α+ +σ

α−−σ

)T

<
ε

2

(2) apply an iterative numerical method to (13) and (14), respectively, in order to
obtain an approximation Ψ

±
n+1 from Ψ±n

(3) if ‖Ψ±∞ −Ψ±n ‖ ≥ ε

2 , then increase n by 1 and go to (2)
(4) set s̃±(τ,ξ ) := Ψ∓n (τ).

By construction of this algorithm, the distance between the approximate invariant
fiber bundle s̃±(τ,ξ ) and s±(τ,ξ ) satisfies∥∥s±(τ,ξ )− s̃±(τ,ξ )

∥∥< ε. (15)

From a numerical perspective, the crucial point in Algorithm 1 is of course
an appropriate choice of the iterative method in step (2) to solve the parameter-
dependent nonlinear equations (13) and (14), respectively, i.e.,

G±(x,ξ ) = 0. (16)

The function G± inherits its smoothness properties from the nonlinearity F , and
due to Hypothesis 1, in general G± is only globally Lipschitz continuous in the
first variable. Therefore, a universally applicable approach to solve (16) is to trans-
form this equation into a fixed-point problem and use fixed-point iteration. Clearly,
this method is only linearly convergent and one prefers methods with better con-
vergence properties. Newton-like methods are formally applicable to (16), if G±
is at least differentiable and a more detailed description of the algorithms used
here can be found in the beginning of the following Section 4.
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Remark 6 (nonsmooth methods) By Rademacher’s theorem, the Lipschitz func-
tions G± are differentiable almost everywhere and the last two decades saw a
strong interest in generalized Newton methods for nonsmooth equations (see [37]
for a survey). They are typically of the form

xn+1 = xn−V−1
n G±(xn,ξ ), Vn ∈ ∂1G±(xn,ξ ), (17)

where the set ∂1G±(xn,ξ ) is the generalized Jacobian of G±(·,ξ ) at xn, defined
by [8], and Vn is arbitrarily taken from ∂1G±(xn,ξ ). Unfortunately, for only Lip-
schitzian mappings G±, the iteration (17) needs not to converge (see [28] for a
counter-example). Locally superlinear convergence results have been obtained
by [41] under the assumption that G± is semismooth (see [29]). This class con-
tains functions with piecewise linear, differentiable or convex components, and is
closed under addition and multiplication.

Remark 7 (structure of the Jacobian) In Figure 1 we sketched the structure of the
Jacobian D1G+(x,ξ ), where zero elements are not included. While it is not sparse,
it indicates that such problems might be appropriate for decomposition methods.



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗


,



∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗


Fig. 1 Structure of the Jacobians D1G+(x,ξ ) (left) and D1G−(x,ξ ) (right) for T = 5

3.2 Computation of fibers

The Algorithm 1 is designed to approximate single points on fixed fibers of in-
variant fiber bundles. To obtain individual fibers as a whole, one could compute
various points and interpolate afterwards.

An alternative approach is the use of continuation methods: For given initial
time τ ∈ I, Algorithm 1 yields an approximation of s±(τ,ξ0) for a fixed value
of ξ0. In order to compute s±(τ,ξ ) for different values of ξ , it is contiguous to
use a continuation (or path following) algorithm applied to (16) (see [1] for an
overview). For our further description of this procedure, we suppose that G± is
sufficiently smooth and the parameter ξ is scalar, i.e., we deal with 1-dimensional
fibers. Upon differentiating the identity (16) and due to our particular parameter
dependence, a so-called Davidenko differential equation is obtained:

D1G±(x(ξ ),ξ )
dx(ξ )

dξ
=

{
e1, if s+ is considered
e(T+1)d , if s− is considered

(18)
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This is an implicit ordinary differential equation and our desired function x is a
solution satisfying the initial condition x(τ) = ξ0, where the initial point ξ0 can be
obtained using Algorithm 1. However, for various reasons it is not advantageous to
tackle (18) directly using an ODE solver. One alternative is a classical continuation
method as described in the following algorithm:

Algorithm 2 (classical path-following) Choose ε > 0, T > 0, step-size bounds
0 < hmin < hmax, an initial step-size h > hmin, τ ∈ I, ξ0 ∈ R and ξmax > ξ0.

(1) Set n := 0 and compute a solution x0 of G±(x,ξ0) = 0 using Algorithm 1
(2) set ξn+1 = ξn +h
(3) solve G±(x,ξn+1) = 0 with xn as initial iterate to obtain xn+1
(4) if ‖G±(xn+1,ξ )‖< ε then

increase n by 1,
set h = min{hmax,1.5h}

else h = 0.5h
(5) if h > hmin and ξ < ξmax, then go to (2).

Appropriate components of the obtained vectors xn approximate s±(τ, ·) at dis-
crete points ξn and the whole fiber S±(τ) can be obtained using interpolation.

While the above Algorithm 2 includes a crude step-size control, we refer to [12,
Chapter 5] for a more sophisticated approach. Such a continuation method can
compute fibers S±(τ) representable as graphs over the linear spaces R(P±(τ)).

On the other hand, to approximate fibers given as embedded manifolds, we
use pseudo-arclength continuation as follows. We define u := (x,ξ ), and choosing
a scalar arclength increment h > 0, we work with the extended equation

G̃±h (u) :=
(

G±(u)
Nh

ũ (u)

)
=
(

0
0

)
, where Nh

ũ (u) := ˙̃u(u− ũ)−h .

The vector ˙̃u represents the tangential approximation of length 1 of the solution
curve in the current point ũ, and hence, the equation Nh

ũ (u) = 0 means that the new
point on the path lies on the tangent vector through the current point ũ.

The pseudo-arclength continuation algorithm can then be described as follows.

Algorithm 3 (pseudo-arclength path-following) Choose ε > 0, T > 0, step-size
bounds 0 < hmin < hmax, an initial step-size h > hmin, values τ ∈ I and smax > 0.

(1) Set n := 0, s := 0 and u0 := 0
(2) compute the direction ũn or choose ũ0 in case n = 0
(3) compute a solution un+1 of G̃±h (un) = 0 with an iterative numerical algorithm

using a first order Euler predictor as initial value
(4) if ‖G±(un+1)‖< ε then

increase n by 1
set h = min{hmax,1.5h}
increase s by h

else h = 0.5h
(5) if h > hmin and s < smax, then go to (2).
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Appropriate interpolation of components of the obtained vectors un approximate
the τ-fiber of the invariant fiber bundle, i.e., this yields an approximation to the
solution curve γ : R→K(1+T )d+1 satisfying

G±(γ(s))≡ 0 for all s ∈ [0,smax].

A dual algorithm leads to an approximation on the interval [smin,0].

3.3 Approximation with one-step methods

We finally mention how our discrete methods can be applied to compute invariant
or integral manifolds of semi-linear ordinary differential equations

ẋ = A(t)x+F(t,x). (19)

As time steps, let (tk)k∈Z denote a strictly increasing sequence of real numbers
with limk→±∞ tk =±∞. We apply a one-step method

xk+1 = xk +(tk+1− tk)Ψ(tk,xk, tk+1− tk) (20)

(e.g., of Runge-Kutta type) to (19). Then (20) can be written as semi-linear differ-
ence equation of the form (2). Under consistency and convergence assumptions on
(20) this recursion can be shown to satisfy Hypotheses 1–2 for sufficiently small
maximal step-sizes tk+1− tk.

Consequently, we can use the previous methodology in order to compute the
invariant fiber bundles Ŝ± of the one-step method (20) applied to our original
continuous problem (19). Results to estimate the difference between the integral
manifolds S± for (19) and the invariant fiber bundles Ŝ± of (20) date back to the pi-
oneering contributions [3] (stable and unstable manifolds), [4] (center manifolds)
and also [16] (pseudo-stable and -unstable manifolds); corresponding results for
nonautonomous equations and varying step-sizes can be found in [23].

4 Examples and illustrations

Before illustrating our results we briefly describe the algorithms and codes used
for our computations, i.e., the solvers for (16). For implementation purposes,
we relied on the MatLab numerical computing environment (release R2007a).
Throughout, the Jacobians of the nonlinear system (16) have been approxi-
mated using forward differences with step-size ε = 10−6. The interested reader
is strongly encouraged to contact the authors to obtain our corresponding codes.

Kelley The monograph [24] is an excellent source for modern Newton-like meth-
ods. Moreover, the algorithms discussed herein are available for download at

http://www.siam.org/books/fa01/

For given ε > 0 we have chosen absolute and relative error tolerances according
to the parameters tol=[0.1ε,ε]. We refer to [24] for a more detailed description
of the subsequent algorithms including their parameters.
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– K NSold (based on nsold): A Newton-Armijo nonlinear solver, where the Ja-
cobians are factored using Gaussian elimination in the following variants:
– K NSold0: params = [40,-1,0.5,1]
– K NSold1: params = [40,1,0,1] (Newton method)
– K NSold2: params = [40,-1,1,1] (chord method)
– K NSold3: params = [40,1,1,1] (Shamanskii method with one step per

Jacobian evaluation)
– K NSoli (based on nsoli): Inexact Newton-Armijo iteration with Eisenstat-

Walker forcing term and parabolic line search via three point interpolation. We
implemented the following variants:
– K NSoli1: params = [40,40,0.9,1,20] (GMRES as iteration)
– K NSoli2: params = [40,40,0.9,2,20] (GMRES(m) as iteration)
– K NSoli3: params = [40,40,0.9,4,20] (TFQMR as iteration)
– K NSoli4: params = [40,40,0.9,3,20] (BICGSTAB as iteration)

– K BrSola (based on brsola): globally convergent Broyden’s method solver
using Armijo rule with one vector storage and params = [40, 40].

MatLab itself offers the routine fsolve as part of its Optimization toolbox to
solve systems of nonlinear equations.

– M DL: Trust-region dog-leg method (NonlEqnAlgorithm=’dogleg’)
– M GN: Gauss-Newton method (NonlEqnAlgorithm=’gn’)

– M GN1: LineSearchType=’quadcubic’ (line search algorithm uses a
safeguarded mixed quadratic and cubic polynomial interpolation and ex-
trapolation method)

– M GN2: LineSearchType=’cubicpoly’ (safeguarded cubic polynomial
method which generally requires fewer function evaluations but more gra-
dient evaluations. Thus, if gradients are being supplied and can be calcu-
lated inexpensively, the cubic polynomial line search method is preferable)

– M LM1: Levenberg-Marquardt algorithm (NonlEqnAlgorithm=’lm’) with cu-
bic line search (LineSearchType=’quadcubic’)

4.1 A discrete test example

We start with an example which is so simple that we analytically know its invariant
manifolds and can explicitly determine parameters needed for the error estimates.
For appropriate choice of the linear part we can interpret its pseudo-stable mani-
fold as stable, strongly stable and strongly unstable manifold, respectively.

Let a,b be real numbers with 0 < |a| < |b| and consider the 2-dimensional
autonomous difference equation1{

xt+1 = axt + x2
t

yt+1 = byt +(a2−b)x2
t +2axtyt + y2

t
. (21)

1 An analogous analysis can be done for the system{
xt+1 = axt + x2

t +2bxtyt +(b2−a)y2
t

yt+1 = byt + y2
t

with pseudo-stable and -unstable manifold given by s+(x)≡ 0, s−(y) = y2, respectively.
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This problem fits into the framework of Section 2 with diagonal linear part

A =
(

a 0
0 b

)
,

possessing an exponential dichotomy with α+ = |a|, α− = |b|, K± = 1 and

P+ =
(

1 0
0 0

)
, P− =

(
0 0
0 1

)
.

Moreover, the nonlinearity for (21) is given by

F(x,y) =
(

x2

(a2−b)x2 +2axy+ y2

)
.

If we equip R2 with the norm ‖(x,y)‖ := max{|x| , |y|}, then the induced matrix
norm of the Jacobian is given by

‖DF(x,y)‖= 2max
{
|x|+

∣∣(a2−b)x+2ay
∣∣ , |ax+ y|

}
,

and using the mean value theorem, we arrive at the Lipschitz estimate

‖F(x,y)−F(x̄, ȳ)‖ ≤ 2ρM(a,b)
∥∥∥∥(x− x̄

y− ȳ

)∥∥∥∥ for all x, x̄,y, ȳ ∈ [−ρ,ρ] ,

with the real constant

M(a,b) :=


1+a2 +a−b, if a2 ≥ b, a≥ 0
max

{
1+a2−a−b, |1−a|

}
, if a2 ≥ b, a < 0

1−a2 +a+b, if a2 < b, a≥ 0
max

{
1+b−a2−a, |1+a|

}
, if a2 < b, a < 0

.

In order to fulfill our assumptions from Theorem 1, we set ρ = α−−α+
9M(a,b) , obtain

` = L = 2ρM(a,b) =
α−−α+

4.5
<

α−−α+

4

and choose σ = α−−α+
5 . It is not difficult to see that the pseudo-stable and pseudo-

unstable manifold of (21), respectively, is given by s+(x) = x2, s−(y)≡ 0. In order
to solve the nonlinear systems G+(x,ξ ) = 0 for s+, we individually applied and
tested various algorithms to the hyperbolic, strongly stable and strongly unstable
case. From a numerical perspective, these cases get increasingly difficult.
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4.1.1 The hyperbolic case

The system parameters a,b, the error tolerance ε and the constants `,σ ,ρ,T de-
scribed above, are given by the following table. In particular, T > 0 is chosen
according to Proposition 3 such that the error is less than ε on the interval [−1,1].

a b ε ` σ ρ T
-1/2 2 10−5 1/3 0.3 0.051282 22

We introduce various parameters describing the performance of the algorithms:

– ξmin,ξmax: Starting at initial points ξ− < 0 < ξ+, we used the classical contin-
uation Algorithm 2 to obtain the maximal convergence interval [ξmin,ξmax] for
the different methods, where ε is given as above, h = 0.1, hmin = 0.1/25. Here,
ξmax is the maximal value such that ‖G+(x,ξmax)‖< ε and h > hmin, and ξmin
is defined correspondingly.

– res: Arithmetic mean of the `2-residual

res :=
1
n

n

∑
i=1

∥∥G+(x,ξi)
∥∥

2

over n uniformly distributed points ξi in an interval I (note that for the evalua-
tion of the `2-residual, we used Algorithm 1, i.e., made no step-size adaptions).

– err: Arithmetic mean of the absolute error over n uniformly distributed points
in an interval I.

– eval: Arithmetic mean of the desired number of evaluations of G+ over n uni-
formly distributed points in an interval I.

For ξ− =−0.1, ξ+ = 0.1, I = [−0.5,0.5] and n = 101, we obtain

method res err eval ξmin ξmax
K BrSola 1.74e-6 1.50e-8 16 -9.10e-1 1.40e+0
K NSoli1 9.80e-5 8.01e-9 23 -9.92e-1 1.49e+0
K NSoli2 9.80e-5 8.01e-9 23 -9.92e-1 1.49e+0
K NSoli3 5.68e-7 1.14e-10 24 -9.92e-1 1.49e+0
K NSoli4 4.96e-7 5.05e-9 25 -9.89e-1 1.49e+0
K NSold0 7.65e-7 4.46e-7 57 -9.92e-1 1.49e+0
K NSold1 2.30e-7 1.48e-8 149 -9.92e-1 1.49e+0
K NSold2 9.68e-7 6.93e-7 52 -9.82e-1 1.48e+0
K NSold3 2.30e-7 1.48e-8 149 -9.92e-1 1.49e+0

The following Figure 2 demonstrates the efficiency of the above algorithms. We
plotted the number of function evaluations for G+ versus the reached accuracy,
where we fixed T = 30 and ξ = 0.5. It turned out that K BrSola and K NSoli1
seem to be the most efficient algorithms for this problem, although the first one
converges on a smaller interval than the other methods.

4.1.2 The strongly stable case

We used different system parameters a,b, which together with the error tolerance
ε and constants `,σ ,ρ,T can be found in the following table. In particular, T > 0
is chosen so that the error is less than ε on the interval [−1,1].
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Fig. 2 Efficiency of the Kelley routines in the hyperbolic case

a b ε ` σ ρ T
-1/2 9/10 10−5 4/45 2/25 0.020672 47

As above, the table below shows the performance of the corresponding methods
for ξ− =−0.1, ξ+ = 0.1, I = [−0.5,0.5] and n = 101.

method res err eval ξmin ξmax
K BrSola 1.70e-6 4.47e-8 17 -9.15e-1 1.26e+0
K NSoli1 8.90e-7 2.63e-8 23 -9.95e-1 1.49e+0
K NSoli2 8.90e-7 2.62e-8 23 -9.95e-1 1.49e+0
K NSoli3 6.21e-7 4.01e-8 24 -9.95e-1 1.49e+0
K NSoli4 7.61e-7 2.09e-7 25 -9.95e-1 1.49e+0
K NSold0 9.62e-7 7.13e-7 130 -9.95e-1 1.49e+0
K NSold1 2.48e-7 6.88e-8 318 -9.92e-1 1.49e+0
K NSold2 8.82e-4 9.56e-4 106 -9.84e-1 1.40e+0
K NSold3 2.48e-7 6.88e-8 318 -9.92e-1 1.49e+0

Compared to the hyperbolic case, the maximal interval of convergence has roughly
the same size. However, the results are slightly less accurate. This is underlined
by Figure 3 illustrating the efficiency of our algorithms, where we fixed T = 30.
Again, quite solid results have been obtained using K BrSola and K NSoli1, al-
though the first mentioned algorithm again converges on a smaller interval.

4.1.3 The strongly unstable case

The system parameters a,b, the error tolerance ε and the constants `,σ ,ρ,T from
above are summarized in the following table. Moreover, T > 0 is chosen to meet
the requirement that the error is less than ε on the interval [−1,1].

a b ε ` σ ρ T
-5/4 3 10−5 7/18 7/20 0.052731 32
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Fig. 3 Efficiency of the Kelley routines in the strongly stable case

This strongly unstable situation seems to be the numerically most critical case:
The highly unstable character of (21) implies that small inaccuracies in (16) get
highly amplified. Indeed, the algorithms K NSold, K NSoli and K BrSola, namely
our favorite methods from the previous cases, do not perform very well. Hence,
we additionally applied M DL, M LM and M GN, which turn out to be robust but
costly. The performance of the more successful algorithms is summarized in the
following table with ξ− =−0.1, ξ+ = 0.1, I = [−0.5,0.5] and n = 101:

method res err eval ξmin ξmax
M DL 4.38e-4 1.23e-5 3213 -6.52e-1 1.90e+0
M LM1 1.82e-3 9.69e-5 4015 -6.39e-1 1.23e+0
M GN1 3.23e-2 3.01e-3 5716 -6.50e-1 1.24e+0
M GN2 4.85e-2 6.00e-3 6035 -6.50e-1 1.23e+0

Obviously, the numerical amount is drastically larger than in the hyperbolic or
strongly stable situation. In order to obtain further performance data, we reduced
the length of the Lyapunov-Perron sums to T = 15 to obtain Figure 4 illustrating
the reached accuracy versus number of iterations.

4.2 The simplified flour-beetle model

The biologically motivated model discussed in this subsection is taken from [27]
and describes a population of flour beetles. Here, let a ∈ (0,1), b > 0 be reals and
(λ (t))t∈I, (µ(t))t∈I denote bounded sequences in [0,∞). We consider the scalar
third-order nonautonomous ordinary difference equation

yt+3 = ayt+2 +byte−λ (t)yt+2−µ(t)yt ,

which is equivalent to the 3-dimensional first-order system
x1

t+1 = x2
t

x2
t+1 = x3

t

x3
t+1 = ax3

t +bx1
t e−λ (t)x3

t −µ(t)x1
t

. (22)
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Fig. 4 Efficiency of the MatLab routines in the strongly unstable case

The time-varying coefficients λ (t),µ(t) describe the only significant source of
pupal mortality in (22), the adult cannibalism (cf. [27]). For the sake of our anal-
ysis, we retreat to the situation a = b2−γ6

bγ2 , where γ > 0 is a real number. This
implies that the Jacobian of (22) evaluated along the zero solution possesses a
pair of complex-conjugated eigenvalues with modulus γ . To guarantee a ∈ (0,1)

we additionally assume γ ∈
(√

ω− b
3ω

, 3√b
)

with ω :=
3
√

b2

2 +
√

3b3(4+27b)
18 . The

linear transformation x 7→Λx with

Λ :=


γ6−2b2

2b2γ2
γ

√
4b2−γ6

2b2 1

− γ2

2b −
√

4b2−γ6

2bγ

b
γ2

1 0 b2

γ4


applied to (22) yields a system with decoupled linear part

xt+1 =

 σ ρ 0
−ρ σ 0
0 0 b

γ2

xt +F(t,xt) , (23)

where σ :=− γ4

2b , ρ := γ

√
4b2−γ6

2b , and we have abbreviated ( f is the r.h.s. of (22))

F(t,x) := Λ
−1 f (t,Λx)−

 σ ρ 0
−ρ σ 0
0 0 b

γ2

x .

It is easy to see that (23) satisfies our assumptions in a neighborhood of 0, where
the dichotomy data is given by α+ = γ , α− = b

γ2 , K± = 1 and P+ :=
(

1
1

0

)
. In

order to approximate the invariant fiber bundles S+ and S− of (23) numerically, we
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fix parameters b := 11
10 , γ := 9

10 (leading to a = 678559
891000 ) and consider asymptotically

constant cannibalism rates λ (t) := 1− 1
π

arctan t, µ(t) := 1 + 1
π

arctan t. In this
particular setting, the cannibalism becomes stationary as t→±∞, but note that our
framework is sufficiently general to capture arbitrary bounded time-dependence.
Then the dichotomy rates for (23) are given by α+ = 9

10 , α− = 110
81 . We have

computed an approximation of the stable and unstable fiber bundle of (23).

Stable fiber bundle In order to compare the performance of different methods to
compute the 2-dimensional stable fiber bundle for (23) (resp. (22)), we introduce
the arithmetic mean of the `2-residual

res+ :=
1

n1n2

n1

∑
i=1

n2

∑
j=1

∥∥G+(x,ξi,ξ j)
∥∥

2

and the number eval+ of necessary evaluations over a grid of n1× n2 uniformly
distributed points (ξi,ξ j) in a 2-dimensional box B. We fixed T = 15 and have
chosen a tolerance of ε = 10−5 in order to approximate the fiber S+(0). In such a
situation, for B = [− 1

4 , 1
4 ]2 and n1 = n2 = 21, we arrive at the following table:

method res+ eval+ remark
K BrSola 1.30e-03 39 line search failures for large ‖ξ‖
K NSoli1 1.31e-06 45
K NSoli2 1.31e-06 45
K NSoli3 9.02e-07 46
K NSoli4 9.01e-07 62

Finally, Figure 5 shows the 2-dimensional stable fibers S+(τ) for τ =
−10,−2,2,10 over the square B computed with K NSoli1. We also approximated
both the stable and unstable fiber bundle in the simplified flour beetle model with
the computer program GAIO (see [10]). We used the fact that unstable manifolds
have pullback attraction properties and that pullback attractors can be approxi-
mated via set-oriented techniques (see [11,2] for the theoretical background in
the autonomous/nonautonomous context). Our computations approve the results
obtained above, however, we made the experience that the computation effort is
much higher when using subdivision techniques. This is due to the fact that one
needs to study the system on many small boxes iteratively to get a fine covering of
the manifold, and mapping boxes means that one has to select many test points in
each box. The total amount of evaluations of the right hand side depends on sev-
eral parameters, and we therefore omit a direct comparison of the two algorithms.
Furthermore, note that the approximation of the two-dimensional stable manifold
via set-oriented methods was only possible in the small box [−0.06,0.06]3, since
one needs to approximate the pullback attractor of the system under time reversal
which cannot be computed globally.

4.3 Hénon map

In order to illustrate the efficiency of our pseudo-arclength path-following algo-
rithm (Algorithm 3), we computed the unstable manifold S− corresponding to the
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Fig. 5 Stable fibers S+(τ) in the simplified flour beetle model for τ =−10,−2,2,10

fixed point (x∗,y∗) :=
(√

609
28 −

1
4 , 3
√

609
280 −

3
40

)
≈ (0.63,0.19) of the Hénon system{

xt+1 = yt +1−ax2
t ,

yt+1 = bxt ,

for the typically used parameters a = 1.4 and b = 0.3. We chose ε = 10−6, T = 20,
hmin = 2−15hmax, the initial step-size h = 10−4 and tested different algorithms to
solve the corresponding nonlinear systems. Their performance can be compared
using the averaged number of evaluations eval = eval

smax−smin
and the corresponding

averaged number of necessary step-size corrections corr = corr
smax−smin

, respectively.

method hmax smin smax eval corr
K NSoli1 2.5e-3 -123.5 74.39 35901 0.1668
M DL 2.5e-3 -59.3 8.74 92775 64.21
M LM1 2.5e-3 -125.0 125.0 54806 0

5.0e-3 -249.8 245.0 27421 0.068
1.0e-2 -499.5 499.9 15420 0.044
5.0e-2 -2496.3 2485.1 3806 0.062

The Levenberg-Marquardt method M LM1 proves to be very robust and needed few
step-size adaptions. While the other methods aborted due to h < hmin we inter-
rupted M LM1 after 50000 successful increments of the continuation parameter,
while the other algorithms reacted more sensitive to larger upper bounds for h.

The results using M LM1 are visualized in the left column of Figure 6. For com-
parison reasons, in the right column we also approximated the Hénon attractor
using rigorous set-oriented numerics in form of the program GAIO (cf. [10]). The
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unstable manifold S−, as embedded manifold, is contained in the strange attrac-
tor A of the Hénon map, i.e., S− ⊆ A. GAIO yields a covering of the attractor,
which can be made arbitrarily fine, and therefore yields an outer approximation of
the unstable manifold. Our continuation approach provides more insight into the
fine structure of the manifold, but is only able to compute a part of S− and con-
sequently delivers a somewhat incomplete picture. Nevertheless, as demonstrated
by Figure 6 at least on a graphical level our approximation is quite accurate.

To provide some further details on our computation using GAIO, we started
with 213 = 8192 boxes and every step contains 4 continuation steps, before subdi-
vision had been applied. Each box required 100 randomly chosen points in which
the Hénon map was evaluated. This led to 1.562.126.800 Hénon evaluations.

4.4 Discretized reaction-diffusion equations

In this final more comprehensive example, we are interested in approximating the
inertial manifold of a scalar nonautonomous reaction-diffusion equation. Thereto,
we apply our results to a finite-dimensional difference equation, which has been
obtained from the original evolutionary PDE by a Bubnov-Galerkin method for
spatial, and a linearly implicit Euler scheme for temporal discretization. Error
estimates for such full discretizations have been obtained in [21,13].

We study the following nonautonomous reaction-diffusion equation

∂tu = ∂xxu− f (t,u), (24)

subject to homogeneous Dirichlet boundary conditions u(t,0) = u(t,π) = 0 and
an initial condition u(τ,x) = u0(x) for given data τ ∈ R, u0 ∈ L2(0,π).

This problem fits into the framework of [9], provided we also suppose that
f : R×R→R is continuous, that the partial derivative ∂ 2

2 f : R×R→R exists as
a continuous function and that there exist reals C1,C2,C3,γ > 0, p≥ 2 such that

γ |v|p−C1 ≤ f (t,v)v, | f (t,v)|
p

p−1 ≤C2(1+ |v|p), −C3 ≤ ∂2 f (t,v) (25)

for all t,v ∈ R and provided we can choose K1,K2 : [0,∞)→ R such that

Ki(r)≥ sup
t∈R

sup
|v|≤
√

πr

∣∣∂ i
2 f (t,v)

∣∣ for all i = 1,2, r ≥ 0. (26)

Using a Galerkin technique, it is shown in [9, p. 114, Proposition 2.1] that the
nonautonomous equation (24) generates a dissipative 2-parameter semiflow on
the space L2(0,π) — note that we write L2 instead of L2(0,π) from now on, and
proceed similarly with the spaces H1

0 or C0.
On the other hand, following [39, Section 5.1], we can formulate (24) as ab-

stract nonautonomous evolutionary equation

u̇+Lu = g(t,u) (27)

with linear part L := −∂xx and substitution operator g(t,u)(x) := − f (t,u(x)).
Then, referring to [39, p. 272, Theorem 51.1], the mild solutions of (27) gener-
ate a dissipative 2-parameter semigroup on H1

0 , and in [9, p. 290, Proposition 3.5]
it is shown that the radius of the corresponding absorbing set in H1

0 is bounded by

r0 := 2
√

2C1C3.
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Fig. 6 Magnifications of the Hénon attractor: Unstable manifold of the Hénon map computed
using Algorithm 3 (left column) versus the attractor computed with GAIO (right column)

It is known that the eigenvalues of the negative Laplacian L with zero boundary
condition u(0) = u(π) = 0 are given by λn = n2, n ∈ N, with corresponding pair-
wise L2-orthonormal eigenfunctions

en(x) =
√

2
π

sin(nx) for all n ∈ N.
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In addition, let Pd : L2→ L2 be the orthogonal projection onto the d-dimensional
space span{e1, . . . ,ed} and Qd := I−Pd be the complementary projector.

After these preparations we prove that (24) admits an inertial manifold:

Proposition 4 Assume that (25), (26) hold and the integer d ≥ 0 satisfies

d >
√

2L(r0)−1/2, L(r) :=
√

2K1(r)2 + r2K2(r)2. (28)

Then the reaction-diffusion equation (24) has a d-dimensional inertial manifold

S− =
{
(τ,ξ + s−(τ,ξ )) ∈ R×H1

0 : ξ ∈ imPd
}

with a smooth function s− : R× imPd → imQd .

Proof In order to employ a suitable inertial manifold theorem, some preparations
are due. As in [39, p. 271] one shows that g : R×H1

0 → H1
0 is well-defined and

satisfies the local Lipschitz condition

‖g(t,u)−g(t, ū)‖H1
0
≤ L(r)‖u− ū‖H1

0
for all t ∈ R, u, ū ∈ B̄r(0)⊆ H1

0

and n∈N. Note that the explicit form of the constant L(r) given above results from
the compact embedding H1

0 ↪→C0 (cf., e.g., [9, p. 30, Theorem 1.2]) satisfying an
explicit estimate

‖u‖C0 ≤
√

π ‖u‖H1
0

for all u ∈ H1
0 . Using an appropriate retraction mapping, it is possible to mod-

ify g(t, ·) outside the absorbing ball Br0(0) such that the altered nonlinearity ḡ is
globally bounded and satisfies a global Lipschitz condition in the second argument
with constant L(r0) (uniformly in t ∈R). Hence, we can apply [25, Corollary 4.1]
to establish the existence of the desired inertial manifold, since

‖ḡ(t,u)− ḡ(t, ū)‖H1
0
≤
√

2L(r)max
{
‖Pn [u− ū]‖H1

0
,‖Qn [u− ū]‖H1

0

}
.

In our situation, the spectral gap condition in [25, p. 934] reduces to the estimate
2
√

2L(r0) < λn+1−λn = 2n+1, and this implies our claim. �

Now we are in a position to describe our discretization strategy for (24). First,
the Bubnov-Galerkin approximation with N Fourier modes, N ≥ 1, is obtained by
inserting the ansatz

u(t,x) =
N

∑
i=1

vi(t)ei(x)

into (24) and taking the L2-inner product with e j, j ∈ [1,N]Z, leads to an initial
value problem in the space imPN . We canonically identify this linear space with
RN and arrive at the N-dimensional ODE

v̇ j =− j2v j + f j(t,v) for all j ∈ [1,N]Z (29)

with the nonlinearities f j : R×RN → R,

f j(t,v) =−
∫

π

0
f
(

t,
N

∑
i=1

vi(t)ei(x)
)

e j(x)dx (30)
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and initial condition

v(τ) = η , η j =
∫

π

0
u0(x)e j(x)dx.

Respecting the (mild) stiffness of the matrix −diag( j2)N
j=1, we apply a linearly

implicit Euler discretization (with step-size h > 0) to (29) and arrive at the nonau-
tonomous difference equation

vt+1 = Ahvt +Fh(t,vt) (31)

with linear part Ah := diag
( 1

1+h j2
)N

j=1 and a nonlinearity Fh : Z×RN→RN , whose
components are given by

Fh(t,v) j :=
h

1+h j2 f j(τ +ht,v) for all j ∈ [1,N]Z.

Henceforth, we deduce the existence of an attractive invariant fiber bundle for the
difference equation (31). Choosing an integer d according to (28), the linear part
of (31) satisfies Hypothesis 1 with dichotomy data K− = K+ = 1,

α+ :=
1

1+h(d +1)2 , α− :=
1

1+hd2 .

and the invariant projector P− = diag(1, . . . ,1,0, . . . ,0). Moreover, it is possible to
verify Hypothesis 2. Thus, we can employ the methods from Section 3 to approx-
imate the invariant fiber bundle

S−h,N =
{

(k,ξ + s−h,N(kh,ξ )) ∈ Z×RN : k ∈ Z, ξ ∈ imP−
}

of the discretization (31). An error estimate relating the nonautonomous inertial
manifold S− of the full reaction diffusion equation (24) (cf. Proposition 4) to the
finite-dimensional invariant fiber bundles S−h,N , can be found in [21, Theorem 5.3]
and is of the form∥∥∥s−h,N(hk,ξ )− s−(hk,ξ )

∥∥∥≤ K1λNh+K2

√
λd+1

λN+1
(32)

with constants K1,K2 > 0, sufficiently large N and small h (cf. also [13]).
In the remaining part of the paper, it is our intention to compute fibers of the

nonautonomous set S−h,N . Here we retreat to a scalar Chafee-Infante equation with
time-dependent coefficients

∂tu = ∂xxu+λ (t)u−µ(t)u3, (33)

under the above initial boundary conditions. For continuous bounded functions
µ,λ : R→ (0,∞) is not difficult to show that (33) fulfills assumption (25) with
nonlinearity f (t,v) = µ(t)v3−λ (t)v and p = 4, provided there exists a γ > 0 with
γ < µ(t) for all t ∈ R and

C1 := sup
t∈R

λ (t)2

4(µ(t)− γ)
, C3 := sup

t∈R
λ (t) < ∞.
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Furthermore, we can choose the functions K1,K2 : [0,∞)→ R from (26) as

K1(r) := max
{

C3,3πr2 sup
t∈R

µ(t)− inf
t∈R

λ (t)
}

, K2(r) := 6
√

πr sup
t∈R

µ(t).

In the next step we compute a Galerkin approximation for (33). Unfortunately, the
constants K1,K2 > 0 in the mentioned error estimate (32) from [21, Theorem 5.3]
are not immediately accessible. For this reason, we heuristically choose a spatial
approximation of order N = 6. With help of some computer algebra to evaluate
the integrals (30), the resulting nonlinearities f1, . . . , f6 read as follows:

f1(t,v) =
µ(t)
2π

(
−6v2v3v4 +3v2

2v5−6v1v2
5−6v1v2

6−6v2v4v5−6v1v2
3

−3v2
3v5 +6v1v3v5−3v2

2v3 +6v2v3v6 +6v1v4v6−6v2v5v6

−6v1v2
4−6v1v2

2 +6v1v2v4−3v3
1−6v3v4v6 +3v2

1v3
)
+λ (t)v1,

f2(t,v) =
µ(t)
2π

(
−6v3v4v5−6v1v2v3 +3v2

1v4 +6v1v3v6−6v1v4v5−3v3
2

−6v2
1v2−6v1v5v6−3v2

4v6−6v1v3v4−3v2
3v4−6v2v2

4

+3v2
2v6−6v2v2

6−6v3v5v6−6v2v2
5 +6v1v2v5−6v2v2

3
)
+λ (t)v2,

f3(t,v) =
µ(t)
2π

(
v3

1−3v3
3−6v2v5v6−3v1v2

2−6v1v3v5−6v1v2v4

+6v1v2v6−6v1v4v6−6v2v4v5−6v4v5v6−6v2v3v4−6v3v4
2

+3v2
1v5−6v3v2

5−6v3v2
6−6v2

1v3−3v2
4v5−6v2

2v3
)
+λ (t)v3,

f4(t,v) =
µ(t)
2π

(
−6v3v4v5−3v2v2

3−6v4v2
5−3v3

4−6v2
2v4−6v2v4v6

+3v2
1v6−6v2

3v4−6v1v3v6 +3v2
1v2−6v1v2v3−6v3v5v6

−6v1v2v5−6v2v3v5−6v2
1v4−3v2

5v6−6v4v2
6
)
+λ (t)v4,

f5(t,v) =
µ(t)
2π

(
−6v1v2v6−6v4v5v6−3v3v2

4−6v2
4v5−3v1v2

3 +3v2
1v3

−6v1v2v4−6v3v4v6 +3v1v2
2−6v2

2v5−6v2v3v6−6v5v2
6

−6v2v3v4−6v2
1v5−3v3

5−6v2
3v5
)
+λ (t)v5,

f6(t,v) =
µ(t)
2π

(
−6v1v3v4−3v3

6−3v4v2
5 +6v1v2v3−3v2v2

4−6v2
2v6 + v3

2

+3v2
1v4−6v2

5v6−6v1v2v5−6v2
1v6−6v2

3v6−6v2
4v6

−6v3v4v5−6v2v3v5
)
+λ (t)v6.

To perform actual computations, we choose δ > 0 and define µ,λ : R→ R by

µ(t) :≡ δ , λ (t) := δ
(

π

2 + arctan t
)
.

Hence, for γ := δ/2 the radius of the absorbing set for the reaction-diffusion equa-
tion (33) is bounded above by r0 = 2π5/2δ . Consequently, Proposition 4 guaran-
tees that (33) admits a nonautonomous inertial manifold S−, whose dimension is
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the minimal integer d ≥ 0 satisfying

d > 2πδ

√
max{12π3δ 2,1}2 +288π5δ 4−1/2.

We are fixing the parameter value δ = 471
5000 and the evolutionary equation (24)

admits a 2-dimensional inertial manifold, i.e., we can choose d = 2 and also ob-
tain a 2-dimensional invariant fiber bundle S−h,6 for the Bubnov-Galerkin-Euler
discretization (31). In particular, this nonautonomous set S−h,6 is given as graph of
a function s−h,6 : Z×R2→ R4.

We used Algorithm 1 to approximate the function s−h,6 over the square [−1,1]2

using a uniform grid of 21×21 points, for an Euler step-size h = 0.1, T = 15 and
accuracy ε = 10−5. The corresponding performance data for the method K NSoli1
are displayed in the following table:

τ -20 -10 0 10 20
err 3.58e-6 3.49e-6 5.72e-4 4.84e-3 5.13e-3

eval 645 654 696 856 865

It is apparent that computing fibers S−h,6(τ) becomes more expensive and less ac-
curate as the fiber index τ grows. The results of this computation are visualized
in Figure 7 showing the components of s−h,6(τ,ξ ) for a fixed fiber with τ = 0. In
addition, Figure 8 illustrates how the first component s−h,6(τ,ξ )1 changes under
varying fibers with τ =−20,20.
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Fig. 7 Graphs of s−h,6(0,ξ1,ξ2)i for i = 1,2,3,4
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Fig. 8 Graphs of s−h,6(τ,ξ1,ξ2)1 for τ =−20,20
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est and C. Froeschlé, editors, Les Methodes Modernes de la Mechanique Céleste, pp. 285–
329. Coutelas, 1989.

41. H. Xu and X. Chang. Approximate Newton methods for nonsmooth equations. Journal of
Optimization Theory and Applications, 93(2):373–394, 1997.


