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Abstract. This work on implicit nonautonomous difference equations (iterations) is devoted to an

abstract technical result on the existence of attractive invariant manifolds. We investigate their existence,
smoothness and their asymptotic phase property using invariant foliations. Such results lay the basic

foundation of further investigations on discretization methods of evolutionary differential equations.

1. Introduction

1.1. Introduction and Motivation: The ultimate goal of the qualitative theory of dynamical systems
is to describe the asymptotic behavior of a given evolutionary equation, i.e. to determine its global
attractor. However, since it is usually difficult to obtain the detailed structure of an attractor — not
only for infinite-dimensional systems —, a mathematically justified simplification of the given problem is
desirable. One of the key techniques to simplify a dynamical system is to embed the attractor into a lower
dimensional surface and thus to reduce the dimension of its state space to arrive at an equation sharing
the same essential dynamical features as the original one. A rigorous mathematical formulation of this
idea is based on the concept of attractive invariant manifolds. Here, invariance means that solutions of
the system starting on the manifold cannot leave it, and attractive means that the dynamics on such an
invariant set affects the behavior of the system in a whole neighborhood, so that an overview over the
whole system can be given. The flow on the manifold forms a (reduced) system on its own, which in
many cases is finite-dimensional and can (hopefully) be investigated more easily. Therefore, in a way,
attractive invariant manifolds capture the essential behavior of a dynamical system.

The ubiquitous invariant manifold theory started over a century ago with the classical works of Poincaré
[Poi86], Hadamard [Had01] and Perron [Per30], and its development has continued to this day. The use
of attractive invariant manifolds is a fairly traditional matter as well, beginning with Pliss’s study on
local center manifolds leading to his celebrated reduction principle (cf. [Pli64]), which is a main tool to
investigate the stability of equilibria in a nonhyperbolic situation. While Pliss’s original work is helpful
in a local analysis near invariant sets, other approaches in the same vain led to reduction principles of
a global nature involving, e.g. slow manifolds of singularly perturbed problems (e.g. [Bar69]) or inertial
manifolds of evolutionary equations (e.g. [FST88]).

While the above references are concerned with dynamical systems generated by differential equations,
the same questions also occur in the field of discrete dynamical systems generated by maps or difference
equations. Theorems on invariant manifolds for maps have been proved in a variety of settings, ranging
from stable/unstable manifolds of fixed points, local center manifolds (cf. [Ioo79]) to general results
of Hirsch, Pugh & Shub [HPS76] or results on nonautonomous equations (see, e.g. [Aul98]). Attractive
invariant manifolds of maps were considered by Kirchgraber [KS78], and his results have been generalized
by Nipp & Stoffer [NS92], including the proof of differentiability properties. Beyond that, global smooth
center-unstable manifolds related to fixed points were treated in Chow & Lu [CL88]. Further applications
of perturbation results for attractive invariant manifolds for maps naturally come from discretization
theory of inertial manifolds (see [DG91, JS95, JST98, vDL99, Kob94, Kob95, Kob99]).
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2 CHRISTIAN PÖTZSCHE

Apart from [Aul98], all the above references work with maps, i.e. autonomous difference equations,
where the right-hand side does not depend explicitly on time. Such an approach has certain limitations,
since the obtained results can be applied only to constant step-size discretizations of autonomous evolu-
tionary equations. This is rather restrictive, since step-size control is widely used in order to counteract
a possible ”stiff” behavior, and from a modelling perspective, nonautonomous equations frequently yield
more realistic descriptions of certain phenomena.

Motivated by this deficit, the present paper was initiated by some work on the discretization theory
of nonautonomous evolutionary equations. In such a set-up, it frequently occurs that systems under
consideration possess global attractors of finite dimension or attractive invariant manifolds. To prove that
the latter property is preserved under discretization with numerical methods and to address convergence
issues later on, one first of all needs corresponding existence results for attractive invariant manifolds of
nonautonomous difference equations.

The article at hand is the first one in a series on that topic. Our general philosophy is to provide flexible
quantitative results applicable to a large class of discretizations, and to gather technical background for
later reference. More precisely, we lay the basics on persistence of attractive invariant manifolds under
discretizations. Our nonautonomous difference equations set-up is sufficiently flexible to obtain invariant
manifolds including discrete versions of inertial manifolds, as well as of pseudo-unstable manifolds related
to equilibria. To capture schemes being adaptive in spatial variables (cf., e.g. [EJ95]), our state spaces
can vary in time. The assumptions on the linear part admit non-smooth initial data (and corresponding
blow-ups). All this works for implicit equations, since stability issues in the numerical solution of PDEs
demand the use of such methods. In addition, the nonlinearities of our systems are allowed to be
unbounded in time, as long as the growth rate is dominated by their linear part. Beyond existence matters,
we include assertions concerning smoothness, invariant foliations and a strong asymptotic attraction
property, namely an asymptotic phase. The latter property guarantees that each solution is attracted
exponentially by a unique solution on the invariant manifold starting at the same time.

Classically, there are basically two approaches to construct such invariant manifolds. The geometrically
intuitive graph transform [KS78, NS92, JS95, JST98, vDL99] and the Lyapunov-Perron method [DG91,
Kob94, Kob95, Kob99] with a more functional analytical background. In an autonomous framework,
both approaches feature certain advantages. In our nonautonomous situation, however, it seems more
canonical to use a Lyapunov-Perron technique and additionally this approach has the benefit that we can
refer to earlier results in a similar setting. Actually, we state that a Cm-smoothness of the right-hand
side is shared by the invariant manifold, provided a certain gap condition is satisfied.

Relating this work to earlier results, [KS78, JS95, vDL99] work in a Lipschitzian setting, the C1-case
is considered in [JST98] and higher-order smoothness assertions can be found in [NS92]. The existence
of an asymptotic phase is shown in [KS78, NS92] and without proof in [Kob94, Kob95, Theorem 2.1]
or [Kob99], while [DG91, JS95, JST98, vDL99] derive a weaker exponential attraction property. To
derive such an asymptotic phase for a given attractive set one typically uses invariant foliations over the
set. In the framework of not necessarily invertible mappings, existence and C1-smoothness results for
invariant manifolds can be found in [CHT97] using the Lyapunov-Perron technique. Related references
concerning invariant manifolds of nonautonomous difference equations (so-called invariant fiber bundles)
include [Aul98, APS02, PS04], where pseudo-stable and -unstable fiber bundles and their smoothness is
addressed. A construction of invariant foliations, however different from ours, can be found in [AW03].

To conclude this introduction we give an outline of this paper: We state our basic setting and as-
sumptions in Section 2. Having this at hand, the existence and smoothness result on attractive invariant
manifolds (invariant fiber bundles) for nonautonomous difference equations is derived in Section 3. We
continue our investigations in Section 4 deriving an invariant foliation over the invariant fiber bundle,
and its asymptotic phase. So far, our results are global in nature and supposed to hold under Lipschitz
conditions on the whole state space. This strong assumption is weakened to construct a discrete coun-
terpart of an inertial manifold in the follow-up [Pöt06a]. A straightforward application of such results
to simplify nonlinear higher-order difference equations has been given in [Pöt06b]. Finally, Section 5 is
intended to illuminate our results and hypotheses by various discretization approaches to evolutionary
equations including temporal and spatial schemes.
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1.2. Basic Notation and Nonautonomous Sets. We write Z := {0,±1,±2, . . .} for the set of integers,
a discrete interval is the intersection of a real interval with Z, in particular, Z+

κ := {k ∈ Z : κ ≤ k},
Z−κ := {k ∈ Z : k ≤ κ} for some κ ∈ Z, and N := Z+

1 . The Banach spaces X,Y of this paper are real
(F = R) or complex (F = C), and their norm is denoted by ‖·‖X , ‖·‖Y , respectively. We write L(X,Y )
for the space of bounded linear operators between X and Y , L(X) := L(X,X), and IX for the identity
on X. The space of bounded n-linear operators from X to Y is denoted by Ln(X,Y ), n ∈ N.

For a map F : X × Z → Y , where Z denotes a nonempty set, we define the Lipschitz constants

LipF (·, z) := inf {L ≥ 0 : ‖F (x, z)− F (x̄, z)‖Y ≤ L ‖x− x̄‖X for all x, x̄ ∈ X} ,
Lip1 F := sup

z∈Z
LipF (·, z),

provided they exist. If the set Z has a metric structure, one defines the Lipschitz constant w.r.t. the second
variable Lip2 F analogously, and proceeds correspondingly, if F depends on more than two variables.
Moreover, f : X → Y is said to be of class Cm, if it is m-times continuously Fréchet differentiable.

In order to provide a flexible set-up covering many discretization schemes, we are dealing with time-
dependent state spaces, and thereto let Xk, k ∈ Z, be a sequence of Banach spaces and X :=

⋃
k∈Z Xk.

For κ ∈ Z and reals γ > 0 we introduce the spaces of exponentially bounded sequences

X+
κ,γ :=

{
φ : Z+

κ → X

∣∣∣∣ φ(k) ∈ Xk for all k ∈ Z+
κ and

supk∈Z+
κ
‖φ(k)‖Xk γ

κ−k <∞

}
,

X−κ,γ :=
{
φ : Z−κ → X

∣∣∣∣ φ(k) ∈ Xk for all k ∈ Z−κ and
supk∈Z−κ ‖φ(k)‖Xk γ

κ−k <∞

}
.

It is handy to use the abbreviation X±κ,γ for either X+
κ,γ or X−κ,γ ; accordingly we proceed with Z+

κ and our
further notation. As an elementary, yet important observation we state without proof

Lemma 1.1 (quasibounded functions). Let κ ∈ Z and γ > 0. Then X±κ,γ is a Banach space w.r.t. the
norm ‖φ‖±κ,γ := supk∈Z±κ ‖φ(k)‖Xk γ

κ−k. A sequence φ : I →
⋃
k∈I Xk defined on a discrete interval I,

which is unbounded according to Z±κ ⊆ I, is called γ±-quasibounded, if φ|Z±κ ∈ X±κ,γ holds.

For (not necessarily invertible) linear operators A(k) : Xk → Xk+1, k ∈ Z, we define the associate
evolution operator Φ(k, κ) : Xκ → Xk, κ, k ∈ Z, κ ≤ k, as the linear mapping given by

Φ(k, κ) :=
{

IXκ for k = κ
A(k − 1) · · ·A(κ) for k > κ

,

and if A(k) is invertible for k < κ, then Φ(k, κ) := A(k)−1 · · ·A(κ− 1)−1 for k < κ.
Let I stand for a discrete interval. Given a sequence φ : I→ X, we define φ′(k) := φ(k+ 1) for all k ∈ I

such that k + 1 ∈ I, and use a similar notation for operator- or set-valued sequences.
Numerical schemes to approximate evolutionary equations are typically recursive formulas (iterations)

and for (numerical) stability reasons they are frequently assumed to be implicit. To denote such (ordinary)
difference equations, we prefer the notation

(1.1) x′ = f(k, x, x′)

rather than the more established ones x(k + 1) = f(k, x(k), x(k + 1)) or xk+1 = f(k, xk, xk+1), with
right-hand side f(k, ·) : Xk ×Xk+1 → Xk+1, k ∈ Z; advantages of this notation are explained in [Aul98].
A sequence φ : I → X satisfying φ(k) ∈ Xk for k ∈ I and the solution identity φ′(k) = f(k, φ(k), φ′(k))
for all k ∈ I with k + 1 ∈ I is called solution of (1.1).

We often write X := {(k, x) : k ∈ Z, x ∈ Xk} for the extended state space of (1.1). If the difference
equation (1.1) is well-defined on X in forward time, i.e. if for all κ ∈ Z, ξ ∈ Xκ there exists a unique
forward solution φ : Z+

κ → X of (1.1) satisfying φ(κ) = ξ, we introduce the general solution ϕ(·;κ, ξ) := φ
of (1.1). It is easy to see that the so-called cocycle property

(1.2) ϕ(k;κ, ξ) = ϕ(k; l, ϕ(l;κ, ξ)) for all k ≥ l ≥ κ

holds for ϕ. Note that (1.2) is also known as 2-parameter semigroup or process property.
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Due to the implicit nature of (1.1), solutions need not to exist or to be unique. We do not dwell on
this fact here and only remark that even in the explicit case (f does not depend on the third argument),
ϕ(k;κ, ·) in general does not exist for k < κ.

Finally, a subset A ⊆ X is called a nonautonomous set with k-fiber A(k) := {x ∈ Xk : (k, x) ∈ A} for
k ∈ Z. Such a set A is called positively invariant w.r.t. (1.1), if the inclusion ϕ(k;κ,A(κ)) ⊆ A(k) holds
for κ ≤ k, and it is called invariant, if one has equality ϕ(k;κ,A(κ)) = A(k) for κ ≤ k. Moreover, we
denote (1.1) as difference equation in A, if A is positively invariant. A nonautonomous set A is called a
vector bundle, if each fiber A(k) is a linear subspace of Xk. The cartesian product of two nonautonomous
sets A,B ⊆ X is defined as A× B := {(k, a, b) ∈ Z× X× X : a ∈ A(k), b ∈ B(k)}.

2. Preliminaries and Assumptions

In this section we motivate the kind of difference equations under consideration and give the precise
hypotheses on the abstract framework we shall use throughout this paper. The generality and scope of
these results will be illustrated by examples in Section 5.

Let Yk, k ∈ Z, be a further sequence of Banach spaces. The paper is concerned with θ-dependent
nonautonomous difference equations of the form

(2.1) y′ = A(k)y + θK ′(k)F (k, y, y′),

where A(k) : Yk → Yk+1, K(k) ∈ L(Yk) are linear operators and F (k, ·) : Yk × Yk+1 → Yk+1 denotes the
nonlinearity for k ∈ Z. As indicated in our introductory remarks on (1.1), we have used a compact and
convenient notation in (2.1), which classically reads as

yk+1 = A(k)yk + θK(k + 1)F (k, yk, yk+1).

A priori, (2.1) is a difference equation in Y := {(k, y) : k ∈ Z, y ∈ Yk}. Here, θ ∈ Θ denotes a parameter
from a nonempty set Θ ⊆ F. Typically, it will be related to the maximal step-size in time discretizations,
or to the ratio of temporal and spatial step-size in full discretizations. Nevertheless, in this paper we do
not focus on the dependence of (2.1) on the parameter θ and include it only for future applications (see
also Remark 2.1(1)).

Now we formulate our main assumptions in a quite quantitative fashion. At first glance they seem
very technical, but basically mean that the linear part of (2.1), given by

(2.2) y′ = A(k)y,

possesses an exponential dichotomy and the nonlinearity F is Lipschitzian.

Hypothesis. Let Xk, Yk, k ∈ Z, be Banach spaces with the embedding

(2.3) Xk ⊆ Yk for all k ∈ Z,
let ν ≥ 0, 0 < Λ < λ, K−1 ,K

−
2 , K+

1 ,K
+
2 ,K

+
3 > 0, L−2 , L

+
2 , L

−
3 , L

+
3 > 0 be reals and assume:

(H0) The difference equation (2.1) is well-defined on X in forward time with general solution ϕ.
(H1) There exist complementary projections P−(k), P+(k) on Yk with P−(k) ∈ L(Yk), P−(k)Yk ⊆ Xk,

P+(k)Xk ⊆ Xk,

P ′−(k)A(k) = A(k)P−(k), K(k)P−(k) = P−(k)K(k) for all k ∈ Z,(2.4)

one has the inclusions

A(k)P+(k)Xk ⊆ Xk+1, P+(k)K(k)Yk ⊆ Xk for all k ∈ Z,(2.5)

the mappings

A(k)|P−(k)Xk : P−(k)Xk → P ′−(k)Xk+1(2.6)

are invertible with associate evolution operator Φ̄(k, κ), we have

C̄ := sup
k∈Z
‖K(k)‖L(Yk) <∞(2.7)

and for all k, l ∈ Z one finally has the exponential dichotomy estimates

‖Φ(k, l)P+(l)‖L(Xl,Xk) ≤ K
+
1 Λk−l for all l ≤ k,(2.8)
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‖Φ(k, l)P+(l)K(l)‖L(Yl,Xk) ≤ (K+
2 +K+

3 |θ|
−ν (k − l + 1)−ν)Λk−l for all l ≤ k,(2.9) ∥∥Φ̄(k, l)P−(l)

∥∥
L(Xl,Xk)

≤ K−1 λk−l for all k ≤ l,(2.10) ∥∥Φ̄(k, l)P−(l)
∥∥
L(Yl,Xk)

≤ K−2 λk−l for all k < l,(2.11)

where Φ(k, l) is the evolution operator for A.
(H2) For one (and hence every) κ ∈ Z the constants

C±κ := sup
k<κ

∥∥P ′±(k)F (k, 0, 0)
∥∥
Yk+1

λκ−k(2.12)

are finite, we have the global Lipschitz estimates

(2.13)

∥∥P ′±(k) [F (k, x, y)− F (k, x̄, y)]
∥∥
Yk+1

≤ L±2 ‖x− x̄‖Xk for all k ∈ Z, x, x̄ ∈ Xk, y ∈ Xk+1,∥∥P ′±(k) [F (k, x, y)− F (k, x, ȳ)]
∥∥
Yk+1

≤ L±3 ‖y − ȳ‖Xk+1
for all k ∈ Z, x ∈ Xk, y, ȳ ∈ Xk+1

and we require the spectral gap condition: There exist reals 0 < σ < σmax ≤ λ−Λ
2 such that

(2.14) |θ|Σ(σ̄) < 1 for all θ ∈ Θ, σ̄ ∈ (σ, σmax)

holds with a function Σ : (σ, σmax) → R+ to be specified later, but depending on the dichotomy
data and L±2 , L

±
3 ; we then define the nonempty interval Γ̄ := [Λ + σ, λ− σ].

(H3) The Fréchet derivatives Dn
2F (k, ·) : Xk × Xk+1 → Ln(Xk × Xk+1, Yk+1), k ∈ Z, exist, are

continuous and one has the global boundedness

sup
k∈Z

sup
(x,y)∈Xk×Xk+1

∥∥∥Dn
(2,3)F (k, x, y)

∥∥∥
Ln(Xk×Xk+1,Yk+1)

<∞ for all n ∈ {1, . . . ,m} .

Remark 2.1. (1) As a matter of notational convenience we suppress a possible dependence of the functions
A, K and F on the parameter θ. Nevertheless, all our assertions persist, as long as the estimates (2.7),
(2.8)–(2.11), (2.12), (2.13) are uniform in θ ∈ Θ. Moreover, also the spaces Xk, Yk can depend on θ.

(2) The left relation in (2.4) implies that the sets P± := {(k, x) ∈ X : x ∈ P±(k)Xk} are positively
invariant w.r.t. (2.2), and the regularity condition (2.6) guarantees invariance of the vector bundle P−.
We denote P+ as pseudo-stable and P− as pseudo-unstable vector bundle of (2.2); the motivation for
this terminology lies in a possible dynamical characterization of these sets following from the dichotomy
estimates (2.8)–(2.11). One should note that the operator A(k) : Yk → Yk+1 defining the linear part
of (2.1) is not assumed to be continuous so far. However, (2.8)–(2.11) imply the boundedness of the
mappings P±(k) : Xk → Xk, P+(k)K(k) : Yk → Xk and

A(k)|−1
P−(k) : P ′−(k)→ P−(k), A(k)|P+(k) : P+(k)→ Xk+1,

A(k)|P+(k)K(k)Yk : P+(k)K(k)Yk → Xk+1.

(3) The estimates (2.9), (2.11) are not present in the established notions of an exponential dichotomy
for linear difference equations (cf., for instance [Hen81, p. 229, Definition 7.6.4]), in particular due to the
singularity for θ → 0 in (2.9). Nevertheless, our approach is well-motivated by diverse applications in
discretization theory sketched in Subsections 5.2 and 5.4.

(4) Hypothesis (H0) holds, if K ′(k)F (k, x, ·) : Xk+1 → Xk+1 satisfies a global Lipschitz condition

(2.15) |θ|LipK ′(k)F (k, x, ·) < 1 for all k ∈ Z, θ ∈ Θ, x ∈ Xk;

this is an easy consequence of the contraction mapping principle.

The following corollary justifies the operator norms used in the dichotomy estimates (2.8)–(2.11).

Corollary 2.1. Under Hypothesis (H1) the following is true:
(a) A(k)P−(k) ⊆ P ′−(k) for k ∈ Z; hence the linear map in (2.6) is well-defined and satisfies

(2.16) Φ̄(k, l)P−(l) = P−(k)Φ̄(k, l) for all k, l ∈ Z,

(b) Φ̄(k, l)P−(l)Yl ⊆ Xk for k ≤ l,
(c) Φ(k, l)P+(l)K(l)Yl ⊆ Xk for l ≤ k,
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(d) if (2.3) is a continuous embedding and (2.11) holds also for k = l, then (2.10), (2.11) are satisfied,
if and only if there exists a K−0 > 0 with

∥∥Φ̄(k, l)P−(l)
∥∥
L(Yl,Yk)

≤ K−0 λk−l for all k ≤ l.

Proof. The proof of (a)–(c) is simple; assertion (d) can be shown with Banach’s isomorphism theorem. �

3. Invariant Fiber Bundles

In this section we derive the existence of an invariant nonautonomous setWθ ⊆ X for (2.1), which gen-
eralizes the pseudo-unstable vector bundle P− to a nonlinear setting. Due to our global assumption (H2),
each of the fibersWθ(κ), κ ∈ Z, will be a submanifold of Xκ given by the graph of a globally Lipschitzian
mapping over P−(κ). A proof of this fact requires technical preparations.

Above all, we introduce the polylogarithm (cf. [Lew82, pp. 236–238]), which is the strictly increasing
unbounded continuous function Liν : [0, 1)→ R, ν ∈ [0,∞) with Liν(0) = 0, given by

(3.1) Liν(x) :=
∞∑
n=1

n−νxn;

it can be interpreted as discrete version of the Gamma function frequently occurring in Lyapunov-Perron
constructions of inertial manifolds for evolutionary differential equations (cf., e.g., [Kob94, Kob95]).

For additional notational convenience, consider the Green’s function for A, given by

(3.2) G(k, κ) :=
{
−Φ̄(k, κ)P−(κ) for k < κ
Φ(k, κ)P+(κ) for k ≥ κ .

We begin our analysis with a perturbation result for linear equations, which essentially goes back to
[Hen81, p. 230, Theorem 7.6.5]. It is concerned with the admissibility of spaces of quasibounded sequences.

Lemma 3.1 (admissibility). Let θ ∈ Θ, κ ∈ Z, C ≥ 0, assume (H1) holds, let γ ∈ (Λ, λ) and consider
the nonautonomous linear difference equation

(3.3) y′ = A(k)y + θK ′(k)r(k)

with a sequence r(k) ∈ Yk+1 for all k ∈ Z. Then the following holds:
(a) If one chooses δ ∈ [γ,∞) and the inequality

(3.4) ‖r(k)‖Yk+1
≤ Cγk−κ for all k ∈ Z+

κ

holds, then for any ξ ∈ Xκ there exists a unique solution φ : Z+
κ → X of (3.3), satisfying φ ∈ X+

κ,δ

and P+(κ)φ(κ) = P+(κ)ξ. It is given by

φ(k) := Φ(k, κ)P+(κ)ξ + θ

∞∑
n=κ

G(k, n+ 1)K ′(n)r(n) for all k ∈ Z+
κ

and satisfies the estimate ‖φ‖+κ,δ ≤ K
+
1 ‖ξ‖Xκ + |θ|C

(
K+

2
γ−Λ + |θ|−νK+

3
Λ Liν

(
Λ
γ

)
+ C̄K−

2
λ−γ

)
.

(b) If one chooses δ ∈ (0, γ] and the inequality

(3.5) ‖r(k)‖Yk+1
≤ Cγk−κ for all k < κ

holds, then for any ξ ∈ Yκ there exists a unique solution φ : Z−κ → X of (3.3), satisfying φ ∈ X−κ,δ
and P−(κ)φ(κ) = P−(κ)ξ. It is given by

φ(k) := Φ̄(k, κ)P−(κ)ξ + θ

κ−1∑
n=−∞

G(k, n+ 1)K ′(n)r(n) for all k ∈ Z−κ

and satisfies the backward estimate

(3.6) ‖φ‖−κ,δ ≤ K
−
1 ‖P−(κ)ξ‖Xκ + |θ|C

(
K+

2

γ − Λ
+
|θ|−ν K+

3

Λ
Liν
(

Λ
γ

)
+
C̄K−2
λ− γ

)
.
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Proof. Let θ ∈ Θ and κ ∈ Z be given. Since both assertions of Lemma 3.1 can be shown in a very similar
fashion, we present only the proof of (b).

For points ξ ∈ Yκ it is easy to verify that φ : Z−κ → X is a solution of (3.3); here the inclusions (2.5)
imply φ(k) ∈ Xk for all k ∈ Z−κ . Moreover, due to (2.16) one gets P−(κ)φ(κ) = P−(κ)ξ. Now we establish
that φ is δ−-quasibounded for δ ∈ (0, γ]. Therefore, (2.7), (2.10), (2.11), (3.5) implies

‖P−(k)φ(k)‖Xk
(2.16)

≤
∥∥Φ̄(k, κ)P−(κ)

∥∥
L(Xκ,Xk)

‖P−(κ)ξ‖Xκ

+ |θ|
κ−1∑
n=k

∥∥Φ̄(k, n+ 1)P ′−(n)
∥∥
L(Yn+1,Xk)

‖K ′(n)‖L(Yn+1) ‖r(n)‖Yn+1

≤ K−1 λ
k−κ ‖P−(κ)ξ‖Xκ + |θ| CC̄K

−
2

λ

λk

γκ

κ−1∑
n=k

(γ
λ

)n
for all k ∈ Z−κ ,

and accordingly one gets from (2.16), (2.9), (3.5) that

‖P+(k)φ(k)‖Xk ≤ |θ|
C

Λ

(
K+

2

Λk

γκ

k−1∑
n=−∞

( γ
Λ

)n
+ |θ|−ν K+

3 γ
k−κ Liν

(
Λ
γ

))
for all k ∈ Z−κ ,

which, using ‖φ(k)‖Xk ≤ ‖P−(k)φ(k)‖Xk + ‖P+(k)φ(k)‖Xk , leads to

‖φ(k)‖Xk δ
κ−k ≤ K−1 ‖P−(κ)ξ‖Xκ + |θ|C

(
K+

2

γ − Λ
+
|θ|−ν K+

3

Λ
Liν
(

Λ
γ

)
+
C̄K−2
λ− γ

)
for all k ∈ Z−κ .

This implies φ ∈ X−κ,δ, as well as the estimate (3.6). To deduce uniqueness of φ, let φ̄ ∈ X−κ,δ be another
solution of (3.3) satisfying P−(κ)φ̄(κ) = P−(κ)ξ. Then the difference φ− φ̄ is a δ−-quasibounded solution
of (2.2) with P−(κ)

[
φ(κ)− φ̄(κ)

]
= 0. Using the dichotomy estimates (2.10), (2.8) one shows that the

trivial solution is the only δ−-quasibounded solution of (2.2) in P+, i.e. φ̄ = φ. �

Let (κ, ξ) ∈ Y and γ > 0. For given φ ∈ X−κ,γ , we formally define the sequence-valued operator

(3.7) Tκ(φ; ξ) := Φ̄(·, κ)P−(κ)ξ + θ

κ−1∑
n=−∞

G(·, n+ 1)K ′(n)F (n, φ(n), φ′(n)).

Similarly to this operator, we frequently encounter sequence-valued maps φ : Z → X±κ,γ , defined on some
set Z. For an efficient notation we use the sometimes imprecise abbreviation φ(k, z) :=

(
φ(z)

)
(k) ∈ Xk.

Lemma 3.2. Let θ ∈ Θ, κ ∈ Z, assume (H1)–(H2) and let γ ∈ (Λ, λ), δ ∈ (0, γ] be reals. Then the
mapping Tκ : X−κ,γ × Yκ → X−κ,δ is well-defined with

‖Tκ(φ; ξ)‖−κ,δ ≤ K
−
1 ‖P−(κ)ξ‖Xκ + |θ|Γκ(γ) + |θ| `(γ) ‖φ‖−κ,γ ,(3.8)

‖P+(κ)Tκ(κ, φ; ξ)‖Xκ ≤ |θ| `
+(γ)

(
C+
κ + L+(γ) ‖φ‖−κ,γ

)
(3.9)

for all φ ∈ X−κ,γ , ξ ∈ Yκ, and we have Lipschitz estimates

Lip1 P+(κ)Tκ(κ, ·) ≤ |θ|L+(γ)`+(γ), Lip1 Tκ ≤ |θ| `(γ), Lip2 Tκ ≤ K−2(3.10)

with the constants L±(γ) := L±2 + γL±3 ,

Γκ(γ) := C+
κ `

+(γ) + C−κ `
−(γ), `(γ) := L+(γ)`+(γ) + L−`−(γ),

`+(γ) :=
K+

2

γ − Λ
+
|θ|−ν K+

3

Λ
Liν
(

Λ
γ

)
, `−(γ) :=

C̄K−2
λ− γ

.

Proof. Let θ ∈ Θ and κ ∈ Z. We begin with preparatory estimates. For φ ∈ X−κ,γ , using the triangle

inequality, from (2.13), (2.12) one has
∥∥P ′±(n)F (n, φ(n), φ′(n))

∥∥
Yn+1

≤
(
C±κ + L±(γ) ‖φ‖−κ,γ

)
γn−κ for
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n < κ. From this, using the relations (2.4), we obtain almost identically to the proof of Lemma 3.1(b)
that for each pair (κ, ξ) ∈ Y one gets

‖P−(k)Tκ(k, φ; ξ)‖Xk δ
κ−k ≤ K−1 ‖P−(κ)ξ‖Xκ + |θ|

(
C−κ + L−(γ) ‖φ‖−κ,γ

) C̄K−2
λ− γ

,

‖P+(k)Tκ(k, φ; ξ)‖Xk δ
κ−k ≤ |θ|

(
C+
κ + L+(γ) ‖φ‖−κ,γ

)( K+
2

γ − Λ
+
|θ|−ν K+

3

Λ
Liν
(

Λ
γ

))
for all k ∈ Z−κ .

Combining these two estimates, one has Tκ(φ; ξ) ∈ X−κ,δ and (3.8). The relation (3.9) follows from the
latter estimate above by setting k = κ. To prove the Lipschitz estimates in (3.10), let φ, φ̄ ∈ X−κ,δ and
ξ, ξ̄ ∈ Yκ. We obtain from (2.5), (2.16), (2.7), (2.11), (2.13) that∥∥P−(k)

[
Tκ(k, φ; ξ)− Tκ(k, φ̄; ξ)

]∥∥
Xk
≤ |θ| C̄K

−
2 L
−(γ)

λ

λk

γκ

κ−1∑
n=k

(γ
λ

)n ∥∥φ− φ̄∥∥−
κ,γ

for all k ∈ Z−κ ,

and (2.16), (2.9), (2.13) implies∥∥P+(k)
[
Tκ(k, φ; ξ)− Tκ(k, φ̄; ξ)

]∥∥
Xk

≤ |θ| L
+(γ)
Λ

(
K+

2

Λk

γκ

k−1∑
n=−∞

( γ
Λ

)n
+ |θ|−ν K+

3 γ
k−κ Liν

(
Λ
γ

))∥∥φ− φ̄∥∥−
κ,γ

for all k ∈ Z−κ .

Setting k = κ immediately yields the first relation in (3.10). Multiplying both above estimates with δκ−k

and applying the triangle inequality to estimate Tκ(φ; ξ)−Tκ(φ̄; ξ), gives us the middle relation of (3.10).
Finally, using (3.7), (2.11), the remaining Lipschitz estimate in (3.10) follows from∥∥Tκ(k, φ; ξ)− Tκ(k, φ; ξ̄)

∥∥
Xk

δκ−k ≤ K−2
∥∥ξ − ξ̄∥∥

Yκ
for all k ∈ Z−κ .

�

By virtue of the so-called Lyapunov-Perron operator Tκ, we can now characterize the exponentially
bounded solutions of difference equation (2.1) quite easily as its fixed points, and solve the corresponding
problem using the contraction mapping principle. Nonetheless, our approach differs from [DG91] or the
continuous counterpart in [SY02, pp. 569ff, Chapter 8], and imposes somewhat weaker assumptions on
the size of |θ|L±(γ).

Lemma 3.3. Let θ ∈ Θ, (κ, ξ) ∈ Y, γ ∈ (Λ, λ), φ ∈ X−κ,γ and assume (H1)–(H2). Then for the mapping
Tκ(·; ξ) : X−κ,γ → X−κ,γ the following two statements are equivalent:

(a) φ solves the difference equation (2.1) with P−(κ)φ(κ) = P−(κ)ξ,
(b) φ is a solution of the fixed point equation

(3.11) φ = Tκ(φ; ξ).

Proof. Let θ ∈ Θ, (κ, ξ) ∈ Y, γ ∈ (Λ, λ). We define a sequence r(k) := F (k, φ(k), φ′(k)) and using (2.7),
(2.13) one has ‖r(k)‖Yk+1

≤
(

supk<κ ‖F (k, 0, 0)‖Yk+1
λκ−k + (Lip2 F + γ Lip3 F ) ‖φ‖−κ,γ

)
γk−κ for k < κ.

Together with (2.12) this yields that r satisfies an estimate of the form (3.5).
(a)⇒ (b) Let φ : Z−κ → X be a γ−-quasibounded solution of (2.1) with P−(κ)φ(κ) = P−(κ)ξ. Then φ

also solves the linear inhomogeneous equation

(3.12) y′ = A(k)y + θK ′(k)F (k, φ(k), φ′(k))

and Lemma 3.1(b) implies assertion (b).
(b) ⇒ (a) A fixed point of Tκ(·, ξ) is a solution of (3.12), and therefore of the nonlinear difference

equation (2.1) satisfying P−(κ)φ(κ) = P−(κ)ξ. �

Lemma 3.4. Let θ ∈ Θ, κ ∈ Z, assume Hypotheses (H1)–(H2) with σmax = λ−Λ
2 , Σ given by

(3.13) Σ(σ) := L−(λ− σ) C̄K
−
2

σ + L+(λ− σ)
(
K+

2
σ + |θ|−ν K+

3 Liν
(

Λ
Λ+σ

))
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and choose γ ∈ Γ̄. Then the mapping Tκ(·; ξ) : X−κ,γ → X−κ,γ possesses a unique fixed point φκ(ξ) ∈ X−κ,γ
for ξ ∈ Yκ. Moreover, the fixed point mapping φκ : Yκ → X−κ,γ satisfies φκ(ξ) = φκ(P−(κ)ξ) and one has:

(a) φκ : Yκ → X−κ,γ is linearly bounded, i.e. for all (κ, ξ) ∈ Y it is

‖φκ(ξ)‖−κ,γ ≤
K−1

1− |θ| `(γ)
‖P−(κ)ξ‖Xκ +

|θ|Γκ(γ)
1− |θ| `(γ)

,(3.14)

‖P+(κ)φκ(κ, ξ)‖Xκ ≤ |θ| `
+(γ)

[
C+
κ +

L+(γ)
1− |θ| `(γ)

(
K−1 ‖P−(κ)ξ‖Xκ + |θ|Γκ(γ)

)]
,(3.15)

(b) φκ is globally Lipschitzian with

Lipφκ ≤
K−2

1− |θ| `(γ)
, LipP+(κ)φκ ≤ |θ|K−1

L+(γ)`+(γ)
1− |θ| `(γ)

,(3.16)

(c) if additionally (H3), Λ < λm with m ∈ N, and σmax = min
{
λ−Λ

2 , λ
(

1− m

√
λ+Λ
λ+λm

)}
hold, then for

γ ∈ [Λ + σ, λ− σ) the mapping φκ : Yκ → X−κ,γ is of class Cm with globally bounded derivatives,

where the constants L±(γ), Γκ(γ), `(γ), `+(γ) are defined in Lemma 3.2.

Proof. Let θ ∈ Θ and (κ, ξ) ∈ Y be given. The spectral gap condition (2.14) implies |θ| `(γ) < 1 for all
γ ∈ Γ̄. Therefore, from the middle estimate (3.10) in Lemma 3.2 we know that Tκ(·; ξ) is a contraction
on the Banach space X−κ,γ and the contraction mapping theorem implies the existence of a unique fixed
point φκ(ξ) ∈ X−κ,γ . The relation φκ(ξ) = φκ(P−(κ)ξ) follows from the fact Tκ(·; ξ) = Tκ(·;P−(κ)ξ), and
consequently the fixed points of the two contractions coincide.

(a) Thanks to |θ| `(γ) < 1, the estimate (3.14) follows from

‖φκ(ξ)‖−κ,γ
(3.11)

= ‖Tκ(φκ(ξ); ξ)‖−κ,γ
(3.8)

≤ K−1 ‖P−(κ)ξ‖Xκ + |θ|Γκ(γ) + |θ| `(γ) ‖φκ(ξ)‖−κ,γ for all ξ ∈ Yκ
and the estimate (3.15) is a consequence of (3.14) and

‖P+(κ)φκ(κ, ξ)‖Xκ
(3.11)

= ‖P+(κ)Tκ(κ, φκ(ξ); ξ)‖Xκ
(3.9)

≤ |θ| `+(γ)
(
C+
κ + L+(γ) ‖φκ(ξ)‖−κ,γ

)
.

(b) Next we derive the Lipschitz estimates in (3.16). Let ξ, ξ̄ ∈ Yκ and from (3.11), (3.10) we obtain∥∥φκ(ξ)− φκ(ξ̄)
∥∥−
κ,γ
≤ K−2

∥∥ξ − ξ̄∥∥
Yκ

+ |θ| `(γ)
∥∥φκ(ξ)− φκ(ξ̄)

∥∥−
κ,γ

,

which yields the left relation in (3.16). Similarly, from (3.11), (3.7), (3.10) one has∥∥P+(κ)
[
φκ(κ, ξ)− φκ(κ, ξ̄)

]∥∥
Xκ
≤ |θ|L+(γ)`+(γ)

∥∥φκ(ξ)− φκ(ξ̄)
∥∥−
κ,γ

,

and this in connection with the left estimate for φκ in (3.16), leads to the right assertion in (3.16).
(c) The rigorous proof of the fact that φκ : Yκ → X+

κ,γ is of class Cm with globally bounded derivatives,
is based on an involved induction argument. It essentially follows the ideas of [PS04] and we refer to this
reference for further details. One formally differentiates (3.11) w.r.t. ξ ∈ Xκ and shows that the formal
derivatives are the actual derivatives using an argument similar to the proof of Lemma 4.3(b). �

Invariant fiber bundles generalize invariant manifolds to nonautonomous difference equations. In order
to be more precise, we call a nonautonomous set Wθ an invariant fiber bundle (IFB for short) of (2.1), if
it is invariant and each fiber Wθ(k) is a submanifold of Xk for k ∈ Z.

Theorem 3.5 (existence of IFBs). Let θ ∈ Θ and assume Hypotheses (H0)–(H2) with σmax = λ−Λ
2 and

Σ given by (3.13). Then the set

Wθ :=
{

(κ, ξ) ∈ X
∣∣∣∣ there exists a solution φ : Z→ X of (2.1)

with φ(κ) = ξ ∈ Xκ and φ|Z−κ ∈ X−κ,γ

}
is an IFB of (2.1), which is independent of γ ∈ Γ̄ and possesses the representation

(3.17) Wθ = {(κ, η + wθ(κ, η)) ∈ X : (κ, η) ∈ P−}
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as graph of a uniquely determined mapping wθ(κ, ·) : Yκ → Xκ with wθ(κ, ξ) = wθ(κ, P−(κ)ξ) ∈ P+(κ)
for all (κ, ξ) ∈ Y and satisfying the invariance equation

wθ(κ+ 1, η1) = A(κ)wθ(κ, η) + θP ′+(κ)K ′(κ)F (κ, η + wθ(κ, η), η1 + wθ(κ+ 1, η1)),

η1 = A(κ)η + θK ′(κ)F (κ, η + wθ(κ, η), η1 + wθ(κ+ 1, η1))
(3.18)

for all (κ, η) ∈ P−, η1 ∈ P ′−(κ). Furthermore, for all γ ∈ Γ̄ and θ ∈ Θ it holds:
(a) wθ(κ, ·) : Yκ → Xκ is linearly bounded

(3.19) ‖wθ(κ, ξ)‖Xκ ≤ |θ| `
+(γ)

[
C+
κ +

L+(γ)
1− |θ| `(γ)

(
|θ|Γκ(γ) +K−1 ‖P−(κ)ξ‖Xκ

)]
for all (κ, ξ) ∈ Y,

(b) wθ(κ, ·) is globally Lipschitzian with

(3.20) Lip2 wθ ≤ |θ|K−1
L+(γ)`+(γ)
1− |θ| `(γ)

,

(c) assume Hypothesis (H3) is satisfied with Λ < λm, m ∈ N, and if the spectral gap condition (2.14)

holds with σmax = min
{
λ−Λ

2 , λ
(

1− m

√
λ+Λ
λ+λm

)}
, then the partial derivatives Dn

2wθ(κ, ·) : Yκ →
Ln(Yκ, Xκ) exist, are continuous, and globally bounded for n ∈ {1, . . . ,m},

Remark 3.1. (1) It is instructive to relate Theorem 3.5 to a more classical situation — in particular to
explicit equations. Under the assumption F (k, 0, 0) ≡ 0 on Z, the relations (2.12) are trivially fulfilled and
Wθ is the pseudo-unstable fiber bundle of (2.1) (cf. [Aul98, APS02, PS04] for the situation of a decoupled
linear part and constant state spaces). To be more precise, in the hyperbolic case Λ < 1 < λ, Theorem 3.5
gives us the unstable fiber bundle of 0, and in the nonhyperbolic cases λ < 1 or 1 < Λ we get the center-
unstable or the strongly unstable fiber bundle of 0, respectively. Likewise, these nonautonomous sets
reduce to the classical invariant manifolds in an autonomous situation.

(2) A result dual to Theorem 3.5 can be shown for the nonautonomous set

W+
θ :=

{
(κ, ξ) ∈ X : ϕ(·;κ, ξ) ∈ X+

κ,γ

}
,

if one assumes A(k) ∈ L(Xk, Xk+1) for all k ∈ Z and that

sup
k∈Z+

κ

max
{∥∥P ′−(k)F (k, 0, 0)

∥∥
Yk+1

,
∥∥P ′+(k)F (k, 0, 0)

∥∥
Yk+1

}
Λκ−k <∞ for one κ ∈ Z

holds instead of (2.12). Then W+
θ generalizes the pseudo-stable fiber bundle (cf. [Aul98, APS02, PS04]).

(3) To provide an intuition for the crucial spectral gap condition (2.14) observe the following: Assume
a more classical situation in which the linear part (2.2) is autonomous and generates a continuous discrete
semigroup (Ak)k∈Z+

0
on a common state space X = Xk. Then the exponential dichotomy assumptions

(2.8)–(2.11) are satisfied, if the spectrum σ(A) allows a decomposition σ(A) = σ+ ∪ σ− into disjoint
spectral sets σ+, σ− ⊆ C such that maxz∈σ− |z| < Λ < λ < infz∈σ+ |z| (cf., for example [Ioo79]). Hence,
in order to satisfy the spectral gap condition (2.14) in this setting, the limit relations

lim
θ→0
|θ|Σ(σ̄) = 0 for all σ̄ ∈ (σ, σmax) , lim

σ̄→∞
|θ|Σ(σ̄) = 0 for all θ ∈ Θ,

offer two possible points of view:
• For a given spectral gap λ−Λ and arbitrary 0 < σ < σmax <

λ−Λ
2 one can choose θ ∈ Θ so small

that (2.14) is fulfilled.
• On the other side, for fixed θ ∈ Θ, the spectral gap λ − Λ > 0 has to be sufficiently large such

that there exist 0 < σ < σmax <
λ−Λ

2 satisfying (2.14).
Which of these perspectives is favorable, depends on the application one has in mind.

Proof. Let θ ∈ Θ, (κ, ξ) ∈ Y and γ ∈ Γ̄.
We want to show that Wθ is an IFB of (2.1). By definition, for each pair of initial values (κ, ξ0) ∈ Wθ

there exists a solution φ ∈ X−κ,γ of (2.1) with φ(κ) = ξ0. Due to the uniqueness of forward solutions
guaranteed by (H0), we have φ = ϕ(·; l, φ(l)); accordingly ϕ(·; l, φ(l)) is a γ−quasibounded solution and
this yields the inclusion ϕ(l;κ, ξ) ∈ Wθ(l) for all l ∈ Z+

κ . Conversely, let ξ1 ∈ W ′θ(κ). Then there exists a



ATTRACTIVE INVARIANT FIBER BUNDLES 11

γ−-quasibounded solution φ : Z→ X of (2.1) with φ′(κ) = ξ1. Obviously, ξ0 := φ(κ) ∈ Wθ(κ) and (H0)
yields ξ1 = ϕ(κ+ 1;κ, ξ0), i.e., we have the inclusion ξ1 ∈ ϕ(κ+ 1;κ,Wθ(κ)).

The spectral gap condition (2.14) and the middle estimate (3.10) from Lemma 3.10 give us

(3.21) |θ| `(γ) ≤ |θ|
(
L+(γ)`+(Λ + σ) + L−(γ)`−(λ− σ)

)
< 1 for all γ ∈ Γ̄;

therefore, Lemma 3.4 implies that the mapping Tκ(·; ξ) : X−κ,γ → X−κ,γ possesses a unique fixed point
φκ(ξ) ∈ X−κ,γ . This fixed point is independent of the growth constant γ ∈ Γ̄ because one has the
inclusion X−κ,λ−σ ⊆ X−κ,γ and every Tκ(·; ξ) : X−κ,γ → X−κ,γ possesses the same fixed point as the restriction
Tκ(·; ξ)

∣∣
X−κ,λ−σ

. Furthermore, the fixed point is a solution of the nonautonomous difference equation (2.1)

satisfying P−(κ)φκ(ξ)(κ) = P−(κ)ξ (cf. Lemma 3.3). Now we define

(3.22) wθ(κ, ξ) := P+(κ)φκ(κ, ξ)

and have wθ(κ, x0) ∈ P+(κ). In addition, (3.7) and the relation φκ(ξ) = φκ(P−(κ)ξ) in Lemma 3.4 imply

wθ(κ, ξ)
(3.22)

= P+(κ)φκ(κ, ξ) = P+(κ)φκ(κ, P−(κ)ξ) = wθ(κ, P−(κ)ξ).

We now verify the representation (3.17) and the invariance equation (3.18).
(⊆) Let (κ, x0) ∈ Wθ, i.e. there exists a γ−-quasibounded solution φ : Z→ X of (2.1) with φ(κ) = x0.

Then φ satisfies P−(κ)φ(κ) = P−(κ)x0 and is consequently the unique fixed point of Tκ(·;x0), i.e.,
φ = φκ(x0) (see Lemma 3.3). This, and φκ(ξ) = φκ(P−(κ)ξ) (cf. Lemma 3.4), implies

x0 = φκ(κ, x0) = P−(κ)φκ(κ, x0) + P+(κ)φκ(κ, x0) = P−(κ)x0 + P+(κ)φκ(κ, P−(κ)x0).

So, setting ξ := P−(κ)x0, we have x0 = ξ+P+(κ)φκ(κ, ξ) = ξ+wθ(κ, ξ) by (3.22) and the first inclusion
of (3.17) is verified.

(⊇) On the other hand, let x0 ∈ Xκ be of the form x0 = ξ + wθ(κ, ξ) for some ξ ∈ P−(κ). Then

x0
(3.22)

= ξ + P+(κ)φκ(κ, ξ) = P−(κ)φκ(κ, ξ) + P+(κ)φκ(κ, ξ) = φκ(κ, ξ)

and therefore, φ = φκ(ξ) is a γ−-quasibounded solution of (2.1) with φ(κ) = x0.
With points (κ, ξ0) ∈ Wθ the invariance of Wθ implies the relation ϕ(k;κ, ξ0) = P−(k)ϕ(k;κ, ξ0) +

wθ(k, P−(k)ϕ(k;κ, ξ0)), multiplication with P+(k) yields P+(k)ϕ(k;κ, ξ0) = wθ(k, P−(k)ϕ(k;κ, ξ0)) for
k ∈ Z+

κ , and setting k = κ+ 1 finally yields the invariance equation (3.18).
(a) We obtain (3.19) from Lemma 3.4 using

‖wθ(κ, ξ)‖Xκ
(3.22)

= ‖P+(κ)φκ(κ, ξ)‖Xκ
(3.15)

≤ |θ| `+(γ)
[
C+
κ +

L+(γ)
1− |θ| `(γ)

(
|θ|Γκ(γ) +K−1 ‖P−(κ)ξ‖Yκ

)]
.

(b) To prove the claimed Lipschitz estimate (3.20), consider ξ, ξ̄ ∈ Yκ and corresponding fixed points
φκ(ξ), φκ(ξ̄) ∈ X−κ,γ of Tκ(·; ξ) and Tκ(·; ξ̄), respectively. One gets from Lemma 3.4(b) that∥∥wθ(κ, ξ)− wθ(κ, ξ̄)∥∥Xκ (3.22)

=
∥∥P+(κ)

[
φκ(κ, ξ)− φκ(κ, ξ̄)

]∥∥
Xκ

(3.16)

≤ |θ|K−1
L+(γ)`+(γ)
1− |θ| `(γ)

∥∥ξ − ξ̄∥∥
Xκ

.

(c) We have the identity wθ(κ, ξ) = φκ(κ, ξ) (see (3.22)) for (κ, ξ) ∈ Y and by well-known properties
of the evaluation map (cf. [APS02, Lemma 3.4]) it follows from Lemma 3.4(c) that wθ(κ, ·) : Yκ → Xκ is
m-times continuously differentiable and possesses globally bounded derivatives. �

4. Invariant Foliation and Asymptotic Phase

In this section we investigate the attraction properties of the IFB Wθ from Theorem 3.5 using certain
invariant fibers. These fibers serve as leaves for an invariant foliation of the extended state space X
and enable us to construct an asymptotic phase for Wθ. This means that Wθ is not only exponentially
attracting, but solutions are also synchronized with corresponding solutions on the IFB Wθ.

Our strategy in the first part of this section is largely parallel to the previous. Nonetheless, the
present assumptions are stronger than in Section 3, and actually the continuity of the general solution
ϕ(k;κ, ·) : Xκ → Xk will play a crucial role. We remark that the construction of IFBs, as well as of
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invariant foliations, can be put in a common framework by studying general “Lyapunov-Perron equations”
(cf. [CHT97] for the autonomous case).

For this, some additional assumptions beyond (H1)–(H3) are required:

Hypothesis. Let m ∈ N, assume for all κ ∈ Z that:
(H ′0) In addition to (H0) we suppose ϕ(k;κ, ·) : Xκ → Xk is continuous for k ∈ Z+

κ .
(H ′1) In addition to (H1) we suppose A(κ) ∈ L(Xκ, Xκ+1).
(H ′2) In addition to (H2) we suppose K ′(κ)F (κ, ·) : Xκ ×Xκ+1 → Xκ+1 is continuous.
(H ′3) In addition to (H3) the Fréchet derivatives Dn

2F (κ, ·) : Xκ×Xκ+1 → Ln(Xκ×Xκ+1, Xκ+1) exist
and are continuous for n ∈ {1, . . . ,m}.

Remark 4.1. Hypothesis (H ′0) can be replaced by (H ′1)–(H ′2) and inequality (2.15), which can easily be
deduced using the parametrized contraction mapping principle (see, for instance, [Aul98, Theorem 6.1]).

We introduce an appropriate Lyapunov-Perron operator to construct invariant fibers. Thereto, let
(κ, η, ξ) ∈ P+ ×X and γ > 0. For ψ ∈ X+

κ,γ , we formally define the mapping

Sκ(ψ; η, ξ) :=Φ(·, κ) [η − P+(κ)ξ] + θ

∞∑
n=κ

G(·, n+ 1)K ′(n)·

· [F (n, ψ(n) + ϕ(n;κ, ξ), ψ′(n) + ϕ(n+ 1;κ, ξ))− F (n, ϕ(n;κ, ξ), ϕ(n+ 1;κ, ξ))] .(4.1)

Lemma 4.1. Let θ ∈ Θ, κ ∈ Z, assume (H0), (H ′1)–(H ′2) and let 0 < γ ≤ δ, γ ∈ (Λ, λ) be reals. Then
the mapping Sκ : X+

κ,γ × P+(κ)×Xκ → X+
κ,δ is well-defined with

‖Sκ(ψ; η, ξ)‖+κ,δ ≤ K
+
1 ‖η − P+(κ)ξ‖Xκ + |θ| `(γ) ‖ψ‖+κ,γ ,(4.2)

‖P−(κ)Sκ(κ, ψ; η, ξ)‖Xκ ≤ |θ|L
−(γ)`−(γ) ‖ψ‖+κ,γ(4.3)

for all ψ ∈ X+
κ,δ, η ∈ P+(κ), ξ ∈ Xκ and we have the Lipschitz estimates

Lip1 P−(κ)Sκ(κ, ·) ≤ |θ|L−(γ)`−(γ), Lip1 Sκ ≤ |θ| `(γ), Lip2 Sκ ≤
K+

1

1− |θ| `(γ)
,(4.4)

where the constants L−(γ), `(γ), `−(γ) are defined in Lemma 3.2.

Proof. Let θ ∈ Θ, γ ∈ (Λ, λ), ψ ∈ X+
κ,γ and (κ, η, ξ) ∈ P+×X be given. Then (H ′2) implies ϕ(k;κ, ξ) ∈ Xk

for all k ∈ Z+
κ . First, we show that the sequence Sκ(ψ; η, ξ) is δ+-quasibounded for δ ∈ [γ,∞). Thereto,

from (2.16), (2.7), (2.11), (2.13) one has

(4.5) ‖P−(k)Sκ(k, ψ; ξ, η)‖Xk ≤ |θ|
C̄K−2 L

−(γ)
λ

λk

γκ

∞∑
n=k

(γ
λ

)n
‖ψ‖+κ,γ for all k ∈ Z+

κ ,

and accordingly (2.4), (2.8), (2.9), (2.13) imply

‖P+(k)Sκ(k, ψ; η, ξ)‖Xk

≤ K+
1 Λk−κ ‖η − P+(κ)ξ‖Xκ + |θ| L

+(γ)
Λ

(
K+

2

Λk

γκ

k−1∑
n=κ

( γ
Λ

)n
+ |θ|−ν K+

3 γ
k−κ Liν

(
Λ
γ

))
‖ψ‖+κ,γ

for all k ∈ Z+
κ , which, using the triangle inequality leads to

‖Sκ(k, ψ; η, ξ)‖ δκ−k ≤ K+
1 ‖η − P+(κ)ξ‖Xκ + |θ| `(γ) ‖ψ‖+κ,γ for all k ∈ Z+

κ .

This implies Sκ(ψ; η, ξ) ∈ X+
κ,δ, as well as the estimate (4.2). Moreover, if we set k = κ, then (4.3) is a

consequence of (4.5). Next we derive the Lipschitz estimates (4.4). Let ψ, ψ̄ ∈ X+
κ,γ , η, η̄ ∈ P+(κ) and fix

ξ ∈ Xκ. We obtain from (2.4), (2.16), (2.7), (2.11), (2.13) that

(4.6)
∥∥P−(k)

[
Sκ(k, ψ; η, ξ)− Sκ(k, ψ̄; η, ξ)

]∥∥
Xk
≤ |θ| C̄K

−
2 L
−(γ)

λ

λk

γκ

∞∑
n=k

(γ
λ

)n ∥∥ψ − ψ̄∥∥+

κ,γ
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for all k ∈ Z+
κ , and (2.16), (2.9), (2.13) have the consequence∥∥P+(k)

[
Sκ(k, ψ; η, ξ)− Sκ(k, ψ̄; η, ξ)

]∥∥
Xk

(4.7)

≤ |θ| L
+(γ)
Λ

(
K+

2

Λk

γκ

k−1∑
n=κ

( γ
Λ

)n
+ |θ|−ν K+

3 γ
k−κ Liν

(
Λ
γ

))∥∥ψ − ψ̄∥∥+

κ,γ
for all k ∈ Z+

κ .

Multiplying both above estimates with δκ−k and applying the triangle inequality to estimate the difference
Sκ(ψ; η, ξ) − Sκ(ψ̄; η, ξ), gives us the middle relation in (4.4); moreover, setting k = κ in (4.6) leads to
the first estimate in (4.4). Finally, the remaining right Lipschitz estimate in (4.4) follows from

‖Sκ(k, ψ; η, ξ)− Sκ(k, ψ; η̄, ξ)‖Xk δ
κ−k ≤ K+

1 ‖η − η̄‖Xκ for all k ∈ Z+
κ ,

which we get from (3.7), (2.8), and we are done. �

The following lemma provides a dynamical interpretation of the operator Sκ.

Lemma 4.2. Let θ ∈ Θ, (κ, η, ξ) ∈ P+ × X , γ ∈ (Λ, λ), ψ ∈ X+
κ,γ and assume (H0), (H ′1)–(H ′2). Then

for the mapping Sκ(·; η, ξ) : X+
κ,γ → X+

κ,γ the following two statements are equivalent:

(a) There exists a ζ ∈ Xκ such that ψ = ϕ(·;κ, ζ)− ϕ(·;κ, ξ) and

(4.8) P+(κ)ψ(κ) = η − P+(κ)ξ,

(b) ψ is a solution of the fixed point equation

(4.9) ψ = Sκ(ψ; η, ξ).

Proof. Let θ ∈ Θ, (κ, ξ) ∈ X and assume ψ ∈ X+
κ,γ . For all k ∈ Z+

κ we define the inhomogeneity

r(k) := F (k, ψ(k) + ϕ(k;κ, ξ), ψ′(k) + ϕ(k + 1;κ, ξ))− F (k, ϕ(k;κ, ξ), ϕ(k + 1;κ, ξ)),

and due to ‖r(k)‖Yk+1
≤ (Lip2 F + |γ|Lip3 F ) ‖ψ‖+κ,γ γk−κ for all k ∈ Z+

κ (cf. (2.13)), an estimate of the
form (3.4) holds for the sequence r.

(a) ⇒ (b) Let η ∈ P+(κ) and assume there exists a ζ ∈ Xκ such that ψ = ϕ(·;κ, ζ)− ϕ(·;κ, ξ) is γ+-
quasibounded and P+(κ)ψ(κ) = η−P+(κ)ξ. Then ψ is a γ+-quasibounded solution of the inhomogeneous
equation y′ = A(k)y + θK ′(k)r(k) and Lemma 3.1(a) implies that ψ is a fixed point of Sκ(·; ξ, η).

(b) ⇒ (a) Conversely, assume ψ ∈ X+
κ,γ satisfies (4.9) for some η ∈ P+(κ), ξ ∈ Xκ. Then define

ζ := P−(κ) [ξ + ψ(κ)] + η and set φ := ψ + ϕ(·;κ, ξ). Hence,

φ(κ) = ψ(κ) + ξ
(4.9)
= P−(κ)ψ(κ) + P+(κ)Sκ(ψ; η, ξ)(κ) + ξ

(4.1)
= P−(κ)ψ(κ) + η − P+(κ)ξ + ξ = P−(κ) [ψ(κ) + ξ] + η = ζ(4.10)

and φ also solves (2.1). Due to the uniqueness of forward solutions guaranteed by (H0), this gives us
φ = ϕ(·;κ, ζ), i.e. ψ = ϕ(·;κ, ζ)− ϕ(·;κ, ξ). Finally, one has

P+(κ)ψ(κ)
(4.10)

= P+(κ) [ζ − ξ] = P+(κ) [η − ξ] = η − P+(κ)ξ.

�

Lemma 4.3. Let θ ∈ Θ, κ ∈ Z, assume Hypotheses (H ′0)–(H ′2) with σmax = λ−Λ
2 , Σ given by (3.13) and

choose γ ∈ Γ̄. Then the mapping Sκ(·; η, ξ) : X+
κ,γ → X+

κ,γ possesses a unique fixed point ψκ(η, ξ) ∈ X+
κ,γ

for each (κ, η, ξ) ∈ P+ ×X . Moreover, for the fixed point mapping ψκ : P+(κ)×Xκ → X+
κ,γ one has:

(a) ψκ : P+(κ)×Xκ → X+
κ,γ is linearly bounded

‖ψκ(η, ξ)‖+κ,γ ≤
K+

1

1− |θ| `(γ)
‖η − P+(κ)ξ‖Xκ ,(4.11)

‖P−(κ)ψκ(κ, η, ξ)‖Xκ ≤ |θ|K
+
1

L−(γ)`−(γ)
1− |θ| `(γ)

‖η − P+(κ)ξ‖Xκ for all (κ, η, ξ) ∈ P+ ×X ,(4.12)



14 CHRISTIAN PÖTZSCHE

(b) one has the Lipschitz estimates

Lip1 ψκ ≤
K+

1

1− |θ| `(γ)
, Lip1 P−(κ)ψκ(κ, ·) ≤ |θ|K+

1

L−(γ)`−(γ)
1− |θ| `(γ)

for all κ ∈ Z,(4.13)

and ψκ : P+(κ)×Xκ → X+
κ,γ is continuous for γ ∈ (Λ + σ, λ− σ],

(c) if additionally (H ′3), Λm < λ with m ∈ N and σmax = min
{
λ−Λ

2 ,Λ
(
m

√
Λ+λ

Λ+Λm − 1
)}

hold, then

for γ ∈ (Λ + σ, λ− σ] the mapping ψκ : P+(κ)×Xκ → X+
κ,γ is of class C1, m-times continuously

partially differentiable w.r.t. the first variable and possesses globally bounded partial derivatives,
where the constants L−(γ), `(γ), `−(γ) are defined in Lemma 3.2.

Proof. Let θ ∈ Θ and (κ, η, ξ) ∈ P+×X . From (4.4) in Lemma 4.1 we know that Sκ(·; η, ξ) is a contraction
on X+

κ,γ and Banach’s theorem implies the existence of a unique fixed point ψκ(η, ξ) ∈ X+
κ,γ .

(a) Thanks to |θ| `(γ) < 1, the estimate (4.11) follows from

‖ψκ(η, ξ)‖+κ,γ
(4.9)
= ‖Sκ(ψκ(η, ξ); η, ξ)‖+κ,γ

(4.2)

≤ K+
1 ‖η − P+(κ)ξ‖Xκ + |θ| `(γ) ‖ψκ(η, ξ)‖+κ,γ ,

and similarly we get

‖P−(κ)ψκ(κ, η, ξ)‖Xκ
(4.9)
= ‖P−(κ)Sκ(κ, ψκ(η, ξ); η, ξ)‖Xκ

(4.3)

≤ |θ|L−(γ)`−(γ) ‖ψκ(η, ξ)‖+κ,γ ;

thanks to (4.11) this implies (4.12).
(b) Next we derive the Lipschitz estimates in (4.13). Thereto, let η, η̄ ∈ P+(κ), fix ξ ∈ Xκ, and from

the estimates (4.9), (4.4) we obtain

‖ψκ(η, ξ)− ψκ(η̄, ξ)‖+κ,γ
(4.4)

≤ K+
1 ‖η − η̄‖Xκ + |θ| `(γ) ‖ψκ(η, ξ)− ψκ(η̄, ξ)‖+κ,γ ,

yielding the left relation in (4.13). Similarly, using the triangle inequality and (4.9), (4.1), (4.4) one has

‖P−(κ) [ψκ(κ, η, ξ)− ψκ(κ, η̄, ξ)]‖Xκ ≤ |θ|L
−(γ)`−(γ) ‖ψκ(η, ξ)− ψκ(η̄, ξ)‖+κ,γ

leading to the remaining right assertion in (4.13). To close the proof of part (b), one has to show the
continuity of ψκ : P+(κ)×Xκ → X+

κ,γ for arbitrary γ ∈ (Λ + σ, λ− σ]. In order to prove the continuity of
ψκ(η0, ·) : Xκ → X+

κ,γ , it suffices to show for arbitrary but fixed (κ, η0) ∈ P+ the following limit relation:

(4.14) lim
ξ→ξ0

‖ψκ(η0, ξ)− ψκ(η0, ξ0)‖+κ,γ = 0

(cf. Lemma A.1). To obtain a short notation, we suppress the dependence on the fixed η0 ∈ P+(κ) from
now on and define mappings Hk : Xk ×Xk+1 ×Xκ → Yk+1 by

Hk(x, y, ξ) := F (k, x+ ϕ(k;κ, ξ), y + ϕ(k + 1;κ, ξ))− F (k, ϕ(k;κ, ξ), ϕ(k + 1;κ, ξ))

and H̄k(ζ, ξ) := Hk(ψκ(k, ζ), ψκ(k + 1, ζ), ξ) for k ∈ Z+
κ . Note that Hk and H̄k(ζ, ·) are continuous due

to (H ′2). For any parameter ξ0 ∈ Xκ we obtain from (4.9), similarly to (4.6) and (4.7), the estimate

‖ψκ(k; ξ)− ψκ(k; ξ0)‖Xk
(4.1)

≤ ‖Φ(k, κ)P+(κ)‖L(Xκ,Xk) ‖ξ − ξ0‖Xκ

+ |θ| C̄K−2
∞∑
n=k

λk−n−1
∥∥P ′−(n)

[
H̄n(ξ, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

+ |θ|K+
2

k−1∑
n=κ

Λk−n−1
∥∥P ′+(n)

[
H̄n(ξ, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

+ |θ|1−ν K+
3

k−1∑
n=κ

(k − n)−νΛk−n−1
∥∥P ′+(n)

[
H̄n(ξ, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

for all k ∈ Z+
κ .
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Subtraction and addition of H̄n(ξ0, ξ) in the corresponding norms leads to

‖ψκ(k; ξ)− ψκ(k; ξ0)‖Xk ≤
6∑
i=0

Si for all k ∈ Z+
κ ,

where (cf. (2.8) and (2.13)) S0 := K+
1 Λk−κ ‖ξ − ξ0‖Xκ ,

S1 := |θ| C̄K−2
∞∑
n=k

λk−n−1L−2 ‖ψκ(n, ξ)− ψκ(n, ξ0)‖Xn

+ |θ| C̄K−2
∞∑
n=k

λk−n−1L−3 ‖ψκ(n+ 1, ξ)− ψκ(n+ 1, ξ0)‖Xn ,

S2 := |θ|K+
2

k−1∑
n=κ

Λk−n−1L+
2 ‖ψκ(n, ξ)− ψκ(n, ξ0)‖Xn

+ |θ|K+
2

k−1∑
n=κ

Λk−n−1L+
3 ‖ψκ(n+ 1, ξ)− ψκ(n+ 1, ξ0)‖Xn ,

S3 := |θ|1−ν K+
3

k−1∑
n=κ

(k − n)−νΛk−n−1L+
2 ‖ψκ(n, ξ)− ψκ(n, ξ0)‖Xn

+ |θ|1−ν K+
3

k−1∑
n=κ

(k − n)−νΛk−n−1L+
3 ‖ψκ(n+ 1, ξ)− ψκ(n+ 1, ξ0)‖Xn ,

S4 := |θ| C̄K−2
∞∑
n=k

λk−n−1
∥∥P ′−(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

,

S5 := |θ|K+
2

k−1∑
n=κ

Λk−n−1
∥∥P ′+(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

,

S6 := |θ|1−ν K+
3

k−1∑
n=κ

(k − n)−νΛk−n−1
∥∥P ′+(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

.

Now we obtain the estimate

‖ψκ(k; ξ)− ψκ(k; ξ0)‖Xk γ
κ−k ≤ K+

1 ‖ξ − ξ0‖Xκ +
3∑
i=1

Siγ
κ−k + |θ| `(γ) ‖ψκ(ξ)− ψκ(ξ0)‖+κ,γ

for k ∈ Z+
κ . Hence, by passing over to the least upper bound for k ∈ Z+

κ , we get

‖ψκ(ξ)− ψκ(ξ0)‖+κ,γ ≤ K
+
1 ‖ξ − ξ0‖Xκ +

max
{
|θ| C̄K−2 , |θ|K

+
2 , |θ|

1−ν
K+

3

}
γκ

1− |θ| `(γ)
sup
k∈Z+

κ

U(k, ξ)

with the mapping

U(k, ξ) :=
λk−1

γk

∞∑
n=k

λ−n
∥∥P ′−(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

+
Λk−1

γk

k−1∑
n=κ

Λ−n
∥∥P ′+(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

(4.15)

+
Λk−1

γk

k−1∑
n=κ

(k − n)−νΛ−n
∥∥P ′+(n)

[
H̄n(ξ0, ξ)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

.
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Therefore, it suffices to prove the limit relation

(4.16) lim
ξ→ξ0

sup
k∈Z+

κ

U(k, ξ) = 0

in order to show the limit relation (4.14). We proceed indirectly. Assume (4.16) does not hold. Then
there exists an ε > 0 and a sequence (ξi)i∈N in Xκ with limi→∞ ξi = ξ0 and supk∈Z+

κ
U(k, ξi) > ε for

i ∈ N. This implies the existence of a sequence (ki)i∈N in Z+
κ such that

(4.17) U(ki, ξi) > ε for all i ∈ N.
From now on we assume γ > Λ + σ, choose a fixed growth rate δ ∈ (Λ + σ, γ) and remark that the
inequality δ

γ < 1 will play an important role below. Because of Hypothesis (H ′2) and the inclusion
ψκ(ξ) ∈ X+

κ,δ we get
∥∥P ′±(n)H̄n(ξ0, ξ)

∥∥
Yn+1

≤ L±(γ) ‖ψκ(ξ0)‖+κ,δ δn−κ for all n ∈ Z+
κ (cf. (2.13)) and the

triangle inequality leads to

U(k, ξ) ≤
2 ‖ψκ(ξ0)‖+κ,δ

δκ

(
L−(γ)
λ− δ

+
L+(γ)
δ − Λ

+ L+(γ) Liν
(

Λ
δ

))( δ
γ

)k
for all k ∈ Z+

κ .

Because of δ
γ < 1, passing over to the limit k → ∞ yields limk→∞ U(k, ξ) = 0 uniformly in ξ ∈ Xκ,

and taking into account (4.17) the sequence (ki)i∈N in Z+
κ has to be bounded above, i.e. there exists an

integer K > κ with ki ≤ K for all i ∈ N. Hence, we can deduce

U(k, ξi)
(4.15)

≤ λK−1

γK

∞∑
n=κ

λ−n
∥∥P ′−(n)

[
H̄n(ξ0, ξi)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

+
Λκ−1

γκ

K∑
n=κ

Λ−n
∥∥P ′+(n)

[
H̄n(ξ0, ξi)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

+
Λκ−1

γκ

K∑
n=κ

(k − n)−νΛ−n
∥∥P ′+(n)

[
H̄n(ξ0, ξi)− H̄n(ξ0, ξ0)

]∥∥
Yn+1

for all i ∈ N, where the last two finite sums tends to zero for i→∞ by the continuity of Hn. Continuity
properties of Hn also imply limi→∞ H̄n(ξ0, ξi) = H̄n(ξ0, ξ0) and with the dominated convergence theorem
of Lebesgue1 we get the convergence of the infinite sum to zero for i→∞. Thus we derived the relation
limi→∞ U(ki, ξi) = 0, which obviously contradicts (4.17). Consequently, we have shown the continuity of
ψκ(η0, ·) : Xκ → X+

κ,γ and the proof of (b) is finished.
(c) A technically quite involved argument yields the rigorous proof of the differentiability assertion on

ψκ : P+(κ) × Xκ → X+
κ,γ . The precise verification essentially follows ideas of [PS04] and we refer the

interested reader to this reference for details. �

Proposition 4.4 (invariant fibers). Let θ ∈ Θ and assume Hypotheses (H ′0)–(H ′2) with σmax = λ−Λ
2 and

Σ given by (3.13). Then for all (κ, ξ) ∈ X the so-called fiber through (κ, ξ), given by

Vξ,θ(κ) :=
{
ζ ∈ Xκ : ϕ(·;κ, ζ)− ϕ(·;κ, ξ) ∈ X+

κ,γ

}
is independent of γ ∈ Γ̄, positively invariant w.r.t. (2.1), i.e.,

(4.18) ϕ(k;κ,Vξ,θ(κ)) ⊆ Vϕ(k;κ,ξ),θ(k) for all k ∈ Z+
κ

and possesses the representation

(4.19) Vξ,θ = {(κ, η + vθ(κ, η, ξ)) : (κ, η) ∈ P+}
as graph of a uniquely determined mapping vθ(κ, ·) : Xκ ×Xκ → Xκ satisfying

(4.20) vθ(κ, η, ξ) ∈ P−(κ) for all (κ, η, ξ) ∈ P+ ×X
and the invariance equation

vθ(κ+ 1, η1, ξ1) = A(κ)vθ(κ, η, ξ) + θP ′−(κ)K ′(κ)F (κ, η + vθ(κ, η, ξ), η1 + vθ(κ+ 1, η1, ξ1)),

1To apply this result from integration theory, one has to write the infinite sum as an integral over piecewise-constant
functions and use the Lipschitz estimate on Hn, which is implied by (2.13), to get an integrable majorant.



ATTRACTIVE INVARIANT FIBER BUNDLES 17

η1 = A(κ)η + θP ′+(κ)K ′(κ)F (κ, η + vθ(κ, η, ξ), η1 + vθ(κ+ 1, η1, ξ)),(4.21)

ξ1 = A(κ)ξ + θK ′(κ)F (κ, ξ, ξ1)

for all (κ, η, ξ) ∈ P+ ×X . Furthermore, for all γ ∈ Γ̄ and θ ∈ Θ it holds:
(a) vθ(κ, ·) : P+(κ)×Xκ → Xκ is continuous and linearly bounded

(4.22) ‖vθ(κ, η, ξ)‖Xκ ≤ ‖P−(κ)ξ‖Xκ + |θ|K+
1

L−(γ)`−(γ)
1− |θ| `(γ)

‖η − P+(κ)ξ‖Xκ for all (κ, η, ξ) ∈ P+ ×X ,

(b) vθ(κ, ·, ξ) is globally Lipschitzian with Lip2 vθ ≤ |θ|K+
1
L−(γ)`−(γ)

1−|θ|`(γ) ,
(c) assume Hypothesis (H ′3) is satisfied with Λm < λ, m ∈ N, and if the spectral gap condition (2.14)

holds with σmax := min
{
λ−Λ

2 , λ
(
m

√
Λ+λ

Λ+Λm

)
− 1
}
, then vθ(κ, ·) : P+(κ) × Xκ → Xκ is of class

C1, the partial derivatives Dn
2 vθ(κ, ·) : P+(κ) ×Xκ → Ln(P+(κ), Xκ) exist, are continuous, and

globally bounded for n ∈ {1, . . . ,m}.

Remark 4.2. (1) In case the difference equation (2.1) is explicit with F (k, 0, 0) ≡ 0 on Z, then Vξ,θ(κ),
ξ ∈ Wθ(κ), is the pseudo-stable foliation over the pseudo-unstable fiber bundle Wθ of (2.1), with V0,θ

being the pseudo-stable fiber bundle of 0.
(2) If the general solution ϕ of (2.1) exists on Z×Z×X one can obtain a dual result to Proposition 4.4

for the fibers V−ξ,θ(κ) :=
{
ζ ∈ Xκ : ϕ(·;κ, ζ)− ϕ(·;κ, ξ) ∈ X−κ,γ

}
.

Proof. Let θ ∈ Θ, (κ, η, ξ) ∈ P+ ×X and γ ∈ Γ̄.
We show the invariance assertion (4.18) for Vξ,θ(κ). Let x0 ∈ ϕ(k;κ,Vξ,θ(κ)) for some k ∈ Z+

κ ,
and by definition this is equivalent to the existence of a ζ ∈ Xκ with x0 = ϕ(k;κ, ζ) and a difference
ϕ(·;κ, ζ)− ϕ(·;κ, ξ) ∈ X+

κ,γ . Therefore,

ϕ(·; k, x0)− ϕ(·; k, ϕ(k;κ, ξ)) = ϕ(·; k, ϕ(k;κ, ζ))− ϕ(·; k, ϕ(k;κ, ξ))
(1.2)
= ϕ(·;κ, ζ)− ϕ(·;κ, ξ),

i.e. x0 ∈ Vϕ(k;κ,ξ),θ(k) for all k ∈ Z+
κ .

Due to the spectral gap condition (2.14) and the middle estimate (4.4) in Lemma 4.1 we have (3.21).
Hence, Lemma 4.3 implies that Sκ(·; η, ξ) : X+

κ,γ → X+
κ,γ has a unique fixed point ψκ(η, ξ) ∈ X+

κ,γ , which
is independent of γ ∈ Γ̄, because one has X+

κ,Λ+σ ⊆ X+
κ,γ and every mapping Sκ(·; η, ξ) : X+

κ,γ → X+
κ,γ

possesses the same fixed point as the restriction Sκ(·; η, ξ)
∣∣
X+
κ,Λ+σ

. Furthermore, the fixed point is of the

form ψκ(η, ξ) = ϕ(·;κ, ζ)− ϕ(·;κ, ξ) with ζ ∈ Xκ (cf. Lemma 4.2). We define

(4.23) vθ(κ, η, ξ) := P−(κ) [ξ + ψκ(κ, η, ξ)]

and evidently have vθ(κ, x0) ∈ P−(κ). Let us verify the representation (4.19).
(⊆) Let ζ ∈ Vξ,θ(κ), i.e., ψ = ϕ(·;κ, ζ)− ϕ(·;κ, ξ) ∈ X+

κ,γ . Then Lemma 4.2 implies

ζ = ψ(κ) + ξ = P−(κ)ψ(κ) + P+(κ)ψ(κ) + ξ

(4.8)
= P−(κ)ψ(κ) + η − P+(κ)ξ + ξ = P−(κ)ψ(κ) + η + P−(κ)ξ,

hence P+(κ)ζ = η, and ζ = P+(κ)ζ+P−(κ) [ξ + ψκ(κ, η, ξ)]. Thus, ζ is contained in the graph of vθ(κ, ·, ξ)
over P+(κ).
(⊇) On the other hand, let ζ ∈ Xκ be of the form ζ = η + vθ(κ, η, ξ) with some η ∈ P+(κ). Then (4.1)
and (4.9) imply P+(κ)ψκ(η, ξ) = η−P+(κ)ξ, which yields ζ = η+P−(κ) [ξ + ψκ(κ, η, ξ)] = ξ+ψκ(κ, η, ξ),
and consequently ϕ(·;κ, ζ)− ϕ(·;κ, ξ) ∈ X+

κ,γ , i.e., ζ ∈ Vξ,θ(κ).
To establish invariance equation (4.21) we observe that (4.19) and the positive invariance (4.18) imply

ϕ(k;κ, η + vθ(κ, η, ξ)) = P+(k)ϕ(k;κ, η + vθ(κ, η, ξ)) + vθ(k, P+(k)ϕ(k;κ, η + vθ(κ, η, ξ)), ϕ(k;κ, ξ))

for all k ∈ Z+
κ . Multiplying this relation with P−(k), setting k = κ+ 1, and keeping the inclusion (4.20)

in mind, this yields (4.21).
(a) We obtain (4.22) from Lemma 4.3, since (4.23), (4.12) imply

‖vθ(κ, η, ξ)‖Xκ ≤ ‖P−(κ)ξ‖Xκ + |θ|K+
1

L−(γ)`−(γ)
1− |θ| `(γ)

‖η − P+(κ)ξ‖Xκ .
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(b) To prove the claimed Lipschitz estimate, consider η, η̄ ∈ P+(κ), a fixed ξ ∈ Xκ and the corre-
sponding fixed points ψκ(η, ξ), ψκ(η̄, ξ) ∈ X+

κ,γ of Sκ(·; η, ξ) and Sκ(·; η̄, ξ), respectively. One gets from
Lemma 4.3(b) that

‖vθ(κ, η, ξ)− vθ(κ, η̄, ξ)‖
(4.23)

= ‖P−(κ) [ψκ(κ, η, ξ)− ψκ(κ, η̄, ξ)]‖
(4.13)

≤ |θ|K−1
L−(γ)`−(γ)
1− |θ| `(γ)

‖η − η̄‖Xκ .

Under Hypothesis (H ′0) we know from Lemma 4.3(b) that ψκ : P+(κ) × Xκ → X+
κ,γ is continuous, and

by definition in (4.23) we get the continuity of vθ(κ, ·).
(c) We have the identity vθ(κ, ξ) = P−(κ) [ξ + ψκ(κ, η; ξ)] (see (4.23)) for (κ, η, ξ) ∈ P+×X , and using

well-known properties of the evaluation map (cf. [APS02, Lemma 3.4]) it follows from Lemma 4.3(c) that
the mapping vθ(κ, ·) : P+(κ)×Xκ → Xκ admits the claimed differentiability properties. �

In a more descriptive way, the subsequent asymptotic phase property is sometimes referred as “expo-
nential tracking” of the IFB Wθ. It states that convergence to Wθ is actually “in phase” with solutions
on the IFB Wθ, and for that reason we speak of an asymptotic phase. The proof relies on a geometric
argument, which demands a stronger spectral gap condition.

Theorem 4.5 (asymptotic phase). Let θ ∈ Θ, κ ∈ Z and assume Hypotheses (H ′0)–(H ′2) with σmax = λ−Λ
2

and Σ given by

Σ(σ) := L−(λ− σ) C̄K
−
2

σ + L+(λ− σ)
(
K+

2
σ + |θ|−ν K+

3 Liν
(

Λ
Λ+σ

))
+ max

{
L−(λ− σ) C̄K

−
2

σ , L+(λ− σ)
(
K+

2
σ + |θ|−ν K+

3 Liν
(

Λ
Λ+σ

))}
.

(4.24)

Then the IFB Wθ from Theorem 3.5 possesses an asymptotic phase, i.e. for every κ ∈ Z there exists a
retraction π(κ, ·) : Xκ →Wθ(κ) onto Wθ(κ) ⊆ Xκ with the property:

(4.25) ‖ϕ(k;κ, ξ)− ϕ(k;κ, π(κ, ξ))‖Xκ ≤
K+

1

1− |θ| `(γ)

(
‖P+(κ)ξ‖Xκ + C̃+

κ (ξ, γ)
)
γk−κ for all k ∈ Z+

κ

and all ξ ∈ Xκ with γ ∈ Γ̄. Geometrically, π(κ, ξ) is given as the unique intersection

(4.26) Wθ(κ) ∩ Vξ,θ(κ) = {π(κ, ξ)} for all ξ ∈ Xκ

and one has:
(a) π(κ, ·) : Xκ →Wθ(κ) is continuous and linearly bounded

(4.27) ‖π(κ, ξ)‖Xκ ≤ C̃
+
κ (ξ, γ) + C̃−κ (ξ, γ) for all ξ ∈ Xκ

and, therefore, it maps bounded subsets of Xκ on bounded subsets of Wθ(κ),
(b) ϕ(k;κ, ·) ◦ π(κ, ·) = π(k, ·) ◦ ϕ(k;κ, ·) for k ∈ Z+

κ ,
(c) if Hypothesis (H ′3) is satisfied for m = 1, then π(κ, ·) : Xκ → Xκ is of class C1,

where the constants L±(γ), `(γ), `±(γ) are defined in Lemma 3.2 and ˜̀(γ) := L+(γ)`+(γ)
1−|θ|`(γ)

L−(γ)`−(γ)
1−|θ|`(γ) ,

C̃+
κ (ξ, γ) := |θ|

`+(γ)C+
κ + L+(γ)`+(γ)

1−|θ|`(γ)

(
|θ|Γκ(γ) +K−1 ‖P−(κ)ξ‖Xκ

)
+ |θ|K+

1 K
−
1

˜̀(γ) ‖P+(κ)ξ‖Xκ
1− |θ|2K+

1 K
−
1

˜̀(γ)
,

C̃−κ (ξ, γ) :=
‖P−(κ)ξ‖Xκ + |θ|K+

1
L−(γ)`−(γ)

1−|θ|`(γ)

(
‖P+(κ)ξ‖Xκ + h`+(γ)C+

κ

)
+ |θ|3K+

1
˜̀(γ)Γκ(γ)

1− |θ|2K+
1 K

−
1

˜̀(γ)
.

Remark 4.3. The fact that the gap condition (2.14) holds with a function Σ given in (4.24), implies that
the mappings wθ, vθ are globally Lipschitzian in their second argument, i.e. we have

Lip2 wθ < 1, Lip2 vθ < 1.(4.28)

Proof. Let θ ∈ Θ, γ ∈ Γ̄ and fix (κ, ξ) ∈ X . As first observation we point out that (4.28) implies

(4.29) |θ|2K+
1 K

−
1

˜̀(γ) < 1 for all γ ∈ Γ̄.
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We show that there exists one and only one ζ ∈ Wθ(κ)∩Vξ,θ(κ). Thereto, note that ζ ∈ Wθ(κ)∩Vξ,θ(κ)
if and only if ζ = P−(κ)ζ + wθ(κ, P−(κ)ζ) and ζ = P+(κ)ζ + vθ(κ, P+(κ)ζ, ξ), which is equivalent to

(4.30) P+(κ)ζ = wθ(κ, P−(κ)ζ) and P−(κ)ζ = vθ(κ, P+(κ)ζ, ξ).

Due to Theorem 3.5(b) and Proposition 4.4(b) we know from (4.28) that Lip2 wθ · Lip2 vθ < 1 and
Lemma A.2(a) applies to the equations (4.30). Consequently, there exist two uniquely determined func-
tions qκ : Xκ → P+(κ), pκ : Xκ → P−(κ) satisfying the equations (4.30), i.e.,

(4.31) qκ(ξ) = wθ(κ, pκ(ξ)) and pκ(ξ) = vθ(κ, qκ(ξ), ξ) on Xκ.

Therefore, π(κ, ξ) := pκ(ξ) + qκ(ξ) is the unique element in the intersection Wθ(κ) ∩ Vξ,θ(κ). We now
derive the estimate (4.25). From (4.31), (3.19), (4.22) we get

‖qκ(ξ)‖Xκ ≤ |θ| `+(γ)C+
κ + |θ| L

+(γ)`+(γ)
1− |θ| `(γ)

(
|θ|Γκ(γ) +K−1 ‖P−(κ)ξ‖Xκ

)
+ |θ|2K+

1 K
−
1

˜̀(γ) ‖P+(κ)ξ‖Xκ + |θ|2K+
1 K

−
1

˜̀(γ) ‖qκ(ξ)‖Xκ .(4.32)

Since by definition, π(κ, ξ) ∈ Vξ,θ(κ) for ξ ∈ Xκ, it follows from Lemma 4.2 that one obtains ϕ(·;κ, ξ)−
ϕ(·;κ, π(κ, ξ)) = ψκ(P+(κ)π(κ, ξ), ξ) and Lemma 4.3 together with (4.11) implies

‖ϕ(k;κ, ξ)− ϕ(k;κ, π(κ, ξ))‖+κ,γ ≤
K+

1

1− |θ| `(γ)
(
‖qκ(ξ)‖Xκ + ‖P+(κ)ξ‖Xκ

)
.

This gives us (4.25), if we resolve (4.32) w.r.t. the value of the norm ‖qκ(ξ)‖Xκ . Then Proposition 4.4(c)
yields the continuity of the mapping vθ(κ, ·) : P+(κ)×Xκ → P−(κ) and Lemma A.2(b) implies that also
π(κ, ·) : Xκ → Xκ is continuous.

(a) It remains to derive the estimate (4.27). From (4.31), (4.22), (3.19) we get

‖pκ(ξ)‖Xκ ≤ ‖P−(κ)ξ‖Xκ + |θ|K+
1

L−(γ)`−(γ)
1− |θ| `(γ)

‖P+(κ)ξ‖Xκ + |θ|K+
1

L−(γ)`−(γ)
1− |θ| `(γ)

h`+(γ)C+
κ

+ |θ|3K+
1

˜̀(γ)Γκ(γ) + |θ|2K+
1 K

−
1

˜̀(γ) ‖pκ(ξ)‖Xκ
and, thanks to (4.29), one can resolve this inequality, as well as inequality (4.32) w.r.t. the values of the
norms ‖pκ(ξ)‖Xκ and ‖qκ(ξ)‖Xκ , respectively; this yields (4.27).

(b) The (positive) invariance of Wθ and Vξ,θ(κ) implies

ϕ(k;κ, π(κ, ξ))
(4.26)
∈ ϕ(k;κ,Wθ(κ) ∩ Vξ,θ(κ)) ⊆ ϕ(k;κ,Wθ(κ)) ∩ ϕ(k;κ,Vξ,θ(κ))

(4.18)

⊆ Wθ(k) ∩ Vϕ(k;κ,ξ),θ(k)
(4.26)

= {π(k, ϕ(k;κ, ξ))} for all k ∈ Z+
κ .

(c) The continuous differentiability of π(κ, ·) : Xκ → Xκ under Hypothesis (H ′3) immediately follows
from a C1-version of Lemma A.2, which can be derived using [Hen81, p. 13]. �

As an immediate consequence of Proposition 4.5 we obtain that for each (κ, ξ) ∈ Wθ the fibers Vξ,θ(κ)
are mutually disjoint and form a foliation of Xκ.

Corollary 4.6 (invariant foliation overWθ). The invariant fibers Vξ,θ(κ) from Proposition 4.4 are leaves
of a positively invariant foliation over each fiber of the IFB Wθ from Theorem 3.5, i.e. for κ ∈ Z we have

Xκ =
⋃

ξ∈Wθ(κ)

Vξ,θ(κ), Vξ1,θ(κ) ∩ Vξ2,θ(κ) = ∅ for all ξ1, ξ2 ∈ Wθ(κ), ξ1 6= ξ2.(4.33)

Proof. Let θ ∈ Θ, (κ, ξ) ∈ X . The positive invariance of the fibers Vξ,θ(κ) is stated in (4.18). Thanks to
relation (4.25) we know ϕ(·;κ, ξ)−ϕ(·;κ, π(κ, ξ)) ∈ X+

κ,γ and thus Proposition 4.4 implies ξ ∈ Vπ(κ,ξ),θ(κ).
Since ξ ∈ Xκ was arbitrary, we established the left relation in (4.33). The remaining pair-wise disjointness
in (4.33) follows from ∅ = {ξ1} ∩ {ξ2} = Vξ1,θ(κ) ∩ Vξ2,θ(κ) for all ξ1, ξ2 ∈ Wθ(κ) with ξ1 6= ξ2. �
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5. Examples: Discretization of Evolutionary Equations

In applied sciences, investigations on the behavior of solutions to nonlinear evolutionary equations
are mainly computational. For that purpose such problems are discretized. In a first step, one possibly
obtains a time discretization, yielding an iteration in a suitable function space over the spacial domain. Of
high practical relevance, of course, are also full discretizations leading to recursions in finite-dimensional
spaces. In this section we discuss a straightforward time discretization and briefly mention two further
discretization approaches. Due to the technical effort, a deeper analysis is postponed to future papers.

Basic for our discretization schemes is an appropriate discrete set of time steps. Given two bounds
0 < h ≤ H, this will be a real sequence (tk)k∈Z satisfying tk+1 − tk ∈ [h,H] for all k ∈ Z.

5.1. Discretized Evolutionary Processes. Our results are intended to hold for discrete dynamical
systems given by time-h-maps of autonomous evolutionary equations, like reaction diffusion equations,
FDEs or ODEs. Information on the time-h-map is of crucial importance in discretization theory, since it
enables us to relate approximate solutions (obtained, e.g. by numerical schemes) to the original solution
of the differential equation. In fact, we can deal with nonautonomous problems as follows:

Let V,W be Banach spaces with V ⊆W . Working in a general framework intended to include abstract
formulations of PDEs and FDEs (see also [CHT97, Section 5.2] for the autonomous case), we consider
an abstract nonautonomous evolutionary equation

(5.1) ut +B(t)u = f(t, u)

on the space W , so that the following holds:

(G1) For each Banach space X ∈ {V,W} the linear equation ut + B(t)u = 0 generates an evolution
operator U(t, s) on X, i.e., (U(t, s))s≤t is a family of bounded linear operators on X such that

(i) U(s, s) = IX , U(t, s)U(s, τ) = U(t, τ) for all τ ≤ s ≤ t,
(ii) the mapping U :

{
(t, s) ∈ R2 : s < t

}
→ L(X) is strongly continuous and there exist reals

a > 0, ν ≥ 0, M1,M2 > 0 with

‖U(t, s)‖L(X) ≤M1e
a(t−s) for all s ≤ t, ‖U(t, s)‖L(W,V ) ≤M2(t− s)−νea(t−s) for all s < t,(5.2)

(iii) there exist reals K±1 ,K
±
2 ,K

+
3 > 0, β1 < β2, a projection-valued mapping Q− : R → L(X)

satisfying Q−(t)U(t, s) = U(t, s)Q−(s) for all s ≤ t, U(t, s)Q−(s)W ⊆ V for all s < t such
that Ū(t, s) := U(t, s)|Q−(s)X : Q−(s)X → Q−(t)X is invertible with inverse Ū(s, t), and
one has the dichotomy estimates with Q+(t) = IX −Q−(t):

‖U(t, s)Q+(s)‖L(V ) ≤ K
+
1 e
−β2(t−s) for all s ≤ t,

‖U(t, s)Q+(s)‖L(W,V ) ≤ (K+
2 +K+

3 (t− s)−ν)e−β2(t−s) for all s < t,∥∥Ū(t, s)Q−(s)
∥∥
L(V )

≤ K−1 e−β1(t−s) for all t ≤ s,∥∥Ū(t, s)Q−(s)
∥∥
L(W,V )

≤ K−2 e−β1(t−s) for all t ≤ s.(5.3)

There exist several sufficient conditions for (G1)(i)–(ii) to hold, which are well-documented in the litera-
ture and we refer to [EN00, p. 478] for an overview. In the autonomous situation of a constant operator
B, the usual theory of C0-semigroups applies (cf., e.g. [EN00]). The dichotomy assumption (G1)(iii) is
more subtle even in the case of ODEs, but related to spectral properties, if B(t) is constant or periodic
in time. On the nonlinearity we suppose

(G2) f : R × V → W satisfies L := Lip2 f < ∞ and for each (τ, u0) ∈ R × V there exists a unique
continuous u :

{
(t, τ, u0) ∈ R2 × V : τ < t

}
→ V such that u(·; τ, u0) solves the integral equation

(5.4) u(t) = U(t, τ)u0 +
∫ t

τ

U(t, s)f(s, u(s; τ, u0)) ds for all τ ≤ t.

Criteria for the existence of such mild solutions can be found, for instance, in [SY02, pp. 224ff].



ATTRACTIVE INVARIANT FIBER BUNDLES 21

Now we arrived at a position to introduce our nonautonomous counterpart of a time-h-map. Thereto,
define functions A : Z→ L(W ), K : Z→ L(W ), F : Z× V →W by

A(k) := U(tk+1, tk), K(k) :≡ IW , F (k, x) :=
1
θ

∫ tk+1

tk

U(tk+1, s)f(s, u(s; tk, x)) ds.

Then, noticing that u(·; tk, x) is a mild solution of (5.1) satisfying the variation of constants formula
(5.4), the general solution ϕ of (2.1) is given by ϕ(k;κ, u0) = u(tk; tκ, u0) for κ ≤ k. Moreover, (2.1) is
well-defined in forward time on Z× V and we assume constant state spaces Xk = V , Yk = W .

Lemma 5.1. If Hypotheses (G1)–(G2) hold with ν ∈ [0, 1) and

(5.5) sup
k<κ

∥∥∥∥∫ tk+1

tk

U(tk+1, s)f(s, u(s; tk, 0)) ds
∥∥∥∥
W

e−β1hk <∞ for one κ ∈ Z,

then the nonlinearity F : Z× V →W is well-defined and satisfies

|θ|LipF (k, ·) ≤M2
1E1−ν

(
1−ν
√
LM2Γ(1− ν)H

)
L

∫ tk+1

tk

ea(tk+1−s) ds for all k ∈ Z,

where Γ denotes the Gamma function and Er is the Mittag-Leffler function (cf. [SY02, p. 624ff]) given
by Er(x) =

∑∞
n=0

xrn

Γ(1+rn) .

Proof. Using the Gronwall-Henry inequality from [SY02, p. 625, Lemma D.4], one deduces a Lipschitz
condition for the solution u(t; s, ·) : V → V , s ≤ t. With this estimate available, the assertion follows
easily from (5.4) and (G2). �

Proposition 5.2. Suppose Hypotheses (G1)–(G2) hold with (5.5), ν ∈ [0, 1) and that V is continuously
embedded into W , where N ≥ 0 is chosen such that ‖v‖W ≤ N ‖v‖ for all v ∈ V . Then there exists an
H0 > 0 such that the nonautonomous difference equation (2.1) obtained as discretization of (5.1) possesses
an attractive invariant fiber bundle (as in Theorem 3.5) with asymptotic phase (as in Theorem 4.5),
provided the step-sizes satisfy H ≤ H0, are balanced according to

(5.6) β1h < β2H,

and the following spectral gap condition is satisfied:

8M2
1

[
(K−2 )2N +

(
1 +K−2 N

)
K+

2

]
L < β2 − h

H β1.(5.7)

Proof. From assumption (G2) we know that (H ′0) is valid. Under inequality (5.6) it is easy to see that
Hypothesis (H ′1) holds with projector P−(k) = Q−(tk), real constants C̄ = 1 and growth rates Λ := e−β2H ,
λ := e−β1h. Moreover, from (5.3) one obtains the estimate ‖P−(k)‖L(W ) ≤ NK−2 and then Lemma 5.1
guarantees that (H ′2) is satisfied. Within this set-up, the spectral gap condition (2.14) reduces to

2
[
(K−2 )2N +

(
1 +K−2 N

)(
K+

2 +K+
3 Liν

(
e−β2H

e−β2H + σ

)
e−β1h − e−β2H

2(qH)ν

)]
·

·M2
1E1−ν

(
1−ν
√
LM2Γ(1− ν)H

)
L <

e−β1qH − e−β2H

4H
.

and by continuity it is easy to see from (5.7) this this inequality holds true for h,H > 0 close to 0 and σ
close to λ−Λ

2 . The assertion follows from Theorem 4.5. �

5.2. Crank-Nicholson Time Discretizations. The discretization approach from the previous Subsec-
tion 5.1 is motivated from a theoretical perspective, because it yields values of true solutions u for (5.1)
evaluated at discrete points tk. From an applied point of view, however, this is not helpful since the
nonlinearity F depends on the unknown solution u. To circumvent this deficit we briefly discuss another
method of more practical importance.

We retreat to a special case of the general framework from Subsection 5.1, where V is continuously
embedded into W and the evolutionary family (U(t, s))s≤t is given by a strongly continuous semigroup
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with generator −B via U(t, s) = e−B(t−s). Then a generalized Crank-Nicholson discretization of (5.1) is
a linearly implicit recursion of the form

uk+1 − uk
tk+1 − tk

= −ϑBuk − (1− ϑ)Buk+1 + f(tk, uk)

with parameter ϑ ∈ R. Choosing the maximal step-size H > 0 so small that IW + (tk+1 − tk)ϑB is
invertible for all k ∈ Z, one can transform this implicit recursion into an explicit difference equation (2.1)
with functions A : Z→ L(W ), K : Z→ L(W ), F : Z× V →W ,

A(k) := [IW + (tk+1 − tk)ϑB]−1 [IW − (tk+1 − tk)(1− ϑ)B] , K(k) := [IW + (tk+1 − tk)ϑB]−1

and F (k, y) := f(tk, y). We can proceed as in [Kob95, Theorems 2.3 and 2.4] to show that this Crank-
Nicholson discretization (2.1) satisfies Hypothesis (H0)–(H2) for appropriate (small) 0 < h ≤ H, provided
ϑ = 1 (i.e. one works with the explicit Euler method), or ϑ ∈

(
1
2 , 1
)

and V,W are Hilbert spaces. It is
worth to point out that (2.9) holds with K+

3 6= 0 in this setting.

5.3. Discretized Parabolic Equations. In particular reaction diffusion equations allow an abstract
formulation as nonautonomous evolutionary equations with time-invariant linear part of the form

(5.8) ut +Bu = f(t, u)

on a Banach space (Z, |·|), so that the following holds:
(G∗1) B is a sectorial operator on Z and there exist two reals β1 < β2 such that the spectrum σ(B) can

be separated into spectral sets (closed, nonempty)

σ− := {λ ∈ σ(B) : <λ < β1} , σ+ := {λ ∈ σ(B) : <λ > β2} .
The spectral projection associated with σ− is denoted by Q−.

This assumption guarantees that −B generates an analytic semigroup (e−Bt)t≥0 on Z. Thus, for α ∈ R
one can define fractional powers Bα and corresponding interpolation spaces Zα := D(Bα) equipped with
norms |x|α := |Bαx| (cf., e.g. [SY02, p. 92ff, Section 3.7]). Then (e−Bt)t≥0 defines also an analytic
semigroup on Zα. The spectral splitting of B and an equivalent re-norming of Zα implies the estimates∥∥e−BtQ−∥∥L(Zα)

≤ e−β1t for all t ≤ 0,
∥∥e−BtQ+

∥∥
L(Zα)

≤ e−β2t for all t ≥ 0(5.9)

with the complementary projection Q+ := IZ −Q−. Beyond that, there exist reals M ≥ 0 so that∥∥e−Bt∥∥
L(Z)

≤M,
∥∥e−Bt∥∥

L(Z,Zα−β)
≤Mtβ−α for all t ∈ (0, 1](5.10)

(cf. [SY02, p. 92ff, Section 3.7]). Concerning the nonlinearity f suppose
(G∗2) There exist α, β ∈ R, α−β ∈ [0, 1) such that f : R×Zα → Zβ is locally Lipschitz and Lip2 f <∞.

Then the abstract parabolic equation (5.8) admits unique mild solutions u(·; τ, u0) : [τ,∞) → Zα satis-
fying u(τ ; τ, u0) = u0 for all τ ∈ R, u0 ∈ Zα (cf. [SY02, p. 239, Theorem 47.7]) and u(t; τ, ·) : Zα → Zα

is continuous. Thus, if we define functions A : Z→ L(Zα), K : Z→ L(Zα), F : Z× Zα → Zα by

A(k) := e−B(tk+1−tk), K(k) :≡ IZα , F (k, x, y) :=
1
θ

∫ tk+1

tk

e−B(tk+1−s)f(s, u(s; tk, x)) ds,

then the general solution ϕ of (2.1) satisfies ϕ(k;κ, u0) = u(tk; tκ, u0) for integers κ ≤ k and thus (2.1) is
well-defined in forward time on R× Zα, where we assume constant state spaces Xk = Yk = Zα.

Lemma 5.3. If Hypotheses (G∗1)–(G∗2) hold with H ≤ min
{

1, 1−α+β

√
1−α+β

2M Lip2 f

}
and

(5.11) sup
k<κ

∣∣∣∣∫ tk+1

tk

e−B(tk+1−s)f(s, u(s; tk, 0)) ds
∣∣∣∣
α

e−β1hk <∞ for one κ ∈ Z,

then the nonlinearity F : Z× Zα → Zα is well-defined and satisfies

|θ|LipF (k, ·) ≤ 2M2

1− α+ β
Lip2 f(tk+1 − tk)1−α+β for all k ∈ Z.

Proof. Using (5.10) this can be shown along the lines of [CHT97, Proposition 6.1]. �
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Proposition 5.4. If Hypothesis (G∗1)–(G∗2) hold with (5.6), (5.11) and H ≤ min
{

1, 1−α+β

√
1−α+β

2M Lip2 f

}
,

then the nonautonomous difference equation (2.1) obtained as discretization of (5.8) possesses an attrac-
tive invariant fiber bundle (as in Theorem 3.5) with asymptotic phase (as in Theorem 4.5), provided the
following spectral gap condition is satisfied:

(5.12)
8M2

1− α+ β
Lip2 f H

1−α+β <
e−β1h − e−β2H

2
.

Proof. An easy calculation shows that Hypothesis (H1) holds with projector P−(k) = Q−(tk), real
constants C̄ = 1, K±1 = K±2 = 1, K+

3 = 0 and growth rates Λ := e−β2H , λ := e−β1h. Then Lemma 5.3
guarantees that Theorem 4.5 can be applied, since (5.12) implies the gap condition (2.14). �

5.4. Finite Difference Full Discretizations. A temporal and finite difference spatial discretization of
the Kuramoto-Sivashinsky equation

ut + uxxxx + uxx + uux = 0

with spatially 1-periodic boundary conditions u(x, t) = u(x + 1, t) is considered in [Kob94, Section 5].
Referring to [SY02, p. 321ff], this equation fits in the abstract set-up of (5.8) with Bu := −uxxxx and
f(t, u) := −uxx − uux, where we choose Z to be the space of 1-periodic odd L2-functions.

Having this at hand, for some (possibly large) positive integer N the scalar Laplacian uxx is discretized
by ∆δ := δ−2(diag(1,−2, 1) +E), where E is a matrix having the entry 1 in the lower left and the upper
right corner, and 0 elsewhere, for δ = 1/N . An implicit Euler method for time discretization of the
resulting stiff ODE ut = −∆2

δu + fδ(u) (see [Kob94] for details) leads to a recursion of the form (2.1)
with

A(k) = K(k) :=
[
I − (tk+1 − tk)∆2

δ

]−1
, F (k, x, y) := tk+1−tk

θ fδ(y).

Preserving periodicity conditions, the appropriate space setting is Xk = Yk :=
{
x ∈ RN+1 : x1 = xN+1

}
equipped with the norms ‖x‖Yk := 1

δ2

√∑N
n=1 x

2
k, ‖x‖Xk := ‖∆δx‖Yk ; note that both spaces depend on

the spatial discretization parameter δ. Then Hypotheses (H0)–(H2) can be verified following the approach
given in [Kob94, Section 5].
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Appendix A

In order to keep this paper largely self-contained we present basic results needed. Let Q,P be metric
spaces and let M be a topological space fulfilling the first axiom of countability.

Lemma A.1. If the mapping f : Q×M → P satisfies Lip1 f <∞, and if f(q, ·) : M → P is continuous
for all q ∈ Q, then f is continuous itself.

Proof. We leave the easy proof to the interested reader. �

Lemma A.2. If Q is a complete metric space, and if the mappings f : Q ×M → P , g : P ×M → Q
satisfy Lip1 f Lip1 g < 1, then the following holds:

(a) For each x ∈ M there exist unique points q∗(x) ∈ Q, p∗(x) ∈ P such that q∗(x) ≡ f(p∗(x), x),
p∗(x) ≡ g(q∗(x), x) on M ,

(b) if f(q, ·) : Q → P , g(p, ·) : P → Q are continuous for each p ∈ P , q ∈ Q, then the mappings
q∗ : M → Q, p∗ : M → P are also continuous.

Proof. We define the mapping h : Q×M → Q by h(q, x) := g(f(q, x), x).
(a) Due to Lip1 f Lip1 g < 1 we have Lip1 h < 1 and the contraction principle implies the existence of

a unique fixed point q∗(x) ∈ Q of h(·, x) for all x ∈M . The claim follows, if we set p∗(x) := f(q∗(x), x).
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(b) By Lemma A.1 the mappings f, g and h are continuous. Then the continuity of q∗ : M → Q,
p∗ : M → P is a consequence of the parametrized contraction principle (cf., e.g., [Aul98, Theorem 6.1]
for a Banach spaces version, which instantly adapts to our situation of metric spaces). �

References

[Aul98] B. Aulbach, The fundamental existence theorem on invariant fiber bundles, J. Difference Equ. Appl. 3 (1998),
501–537.
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