Books

[1] B.Kaltenbacher, A.Neubauer, and O.Scherzer.

Iterative Regularization Methods for Nonlinear Problems.

de Gruyter, Berlin, New York, 2008.

[2] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski.

Regularization Methods in Banach Spaces.

de Gruyter, Berlin, New York, 2012.

Edited Volumes

[1] T. Schuster, B. Hofmann, B.Kaltenbacher.

Special Issue Tackling Inverse Problems in a Banach Space Environment.

Inverse Problems 28(10), 2012.

[2] L. Bociu, B. Kaltenbacher, P. Radu.

Special Volume on Nonlinear PDEs and Control Theory with Applications.

Evolution Equations and Control Theory EECT 2(2), 2013.

Book Chapters

[1] B.Kaltenbacher and M.Kaltenbacher.

Modelling and iterative identification of hysteresis via Preisach operators in PDEs.

In J.Kraus and U.Langer, editors, Lectures on Advanced Computational Methods in Mechanics,

volume 1 of Radon Series on Computational and Applied Mathematics, pages 1--50, Berlin, 2007. de Gruyter.

[2] M. Burger, B. Kaltenbacher, and A. Neubauer.

Iterative Solution Methods.

In O.Scherzer, editor, Handbook of Mathematical Methods in Imaging Springer, Science+Business Media, 2011.

[3] B. Kaltenbacher and M. Kaltenbacher.

Modeling and Numerical Simulation of Ferroelectric Material Behavior Using Hysteresis Operators.

In: Micka¨el Lallart, ed., Ferroelectrics - Characterization and Modeling, 2011. ISBN: 978-953-307-455-9.

[4] P. Steinhorst and B. Kaltenbacher.

Application of the Reciprocity Principle for the Determination of Planar Cracks in Piezoelectric Material.

in: Apel, Thomas; Steinbach, Olaf (Eds.), Advanced Finite Element Methods and Applications. Lecture Notes in Applied and Computational Mechanics, Vol. 66, Springer, 2013

Refereed Journal and Proceedings Papers

[1] B. Kaltenbacher (Blaschke), H.W. Engl, W. Grever, and M. Klibanov.

An appication of Tikhonov regularization to phase retrieval.

Nonlinear World, 3:771-786, 1996.

[2] B. Kaltenbacher (Blaschke), A. Neubauer, and O. Scherzer.

On convergence rates for the iteratively regularized Gauss-Newton method.

IMA Journal of Numerical Analysis, 17:421- 436, 1997.

[3] B. Kaltenbacher (Blaschke), and H.W Engl

Regularization methods for nonlinear ill-posed problems with applications to phase reconstruction

In H.W. Engl, A.K. Louis, W.Rundell, Eds., Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Wien-New York, 1997. (Oberwolfach Workshop, 1996)

[4] B. Kaltenbacher.

Some Newton type methods for the regularization of nonlinear ill-posed problems.

Inverse Problems, 13:729-753, 1997.

[5] B. Kaltenbacher.

A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems.

Numerische Mathematik, 79:501-528, 1998.

[6] B. Kaltenbacher.

On Broyden's method for nonlinear ill-posed problems.

Numerical Functional Analysis and Optimization, 19:807-833, 1998.

[7] B. Kaltenbacher.

On convergence rates of some iterative regularization methods for an inverse problem for a nonlinear parabolic equation connected with continuous casting of steel.

Journal of Inverse and Ill-Posed Problems, 7:145-164, 1999.

[8] B. Kaltenbacher.

A projection-regularized Newton method for nonlinear ill-posed problems and its application to parameter identification problems with finite element discretization.

SIAM J.Numer.Anal., 37:1885-1908, 2000.

[9] B. Kaltenbacher.

Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems.

Inverse Problems, 16:1523-1539, 2000.

[10] B. Kaltenbacher.

On the regularizing properties of a full multigrid method for ill-posed problems.

Inverse Problems, 17:767-788, 2001.

[11] B. Kaltenbacher and J. Schöberl.

A saddle point variational formulation for projection-regularized parameter identification.

Numerische Mathematik, 91:675-697, 2002. DOI 10.1007/s002110100350.

[12] B. Kaltenbacher, A. Neubauer, and A.G. Ramm.

Convergence rates of the continuous regularized Gauss-Newton method.

Journal of Inverse and Ill-posed Problems, 10:261-280, 2002.

[13] B. Kaltenbacher and J. Schicho.

A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems.

Numerische Mathematik, 93:77-107, 2002. DOI 10.1007/s002110100375.

[14] B. Kaltenbacher.

V-cycle convergence of some multigrid methods for ill-posed problems.

Mathematics of Computation, 72:1711-1730, 2003.

[15] H. Benameur and B. Kaltenbacher.

Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators.

Journal of Inverse and Ill-Posed Problems, 10:561-584, 2002.

[16] B. Kaltenbacher, M. Kaltenbacher, and S. Reitzinger.

Identification of nonlinear B-H curves based on magnetic field computations and multigrid methods for ill-posed problems.

European Journal of Applied Mathematics, 14:15-38, 2003.

[17] G. Bodnar, P. Pau, J. Schicho, and B. Kaltenbacher

Exact real computation in computer algebra

In F. Winkler and U.Langer, eds., Lecture Notes in Computer Science. Springer, 2003 (Proceedings of the SNCS'01)

[18] B. Kaltenbacher

Identification of nonlinear parameters in hyperbolic PDEs, with application to piezoelectricity

In K. Kunisch, G. Leugering, J. Sprekels, F. Tröltzsch, Hrsg., Optimal Control of Coupled Systems of PDEs. Springer, 2006.

(Oberwolfach Workshop, 2005)

[19] M. Burger and B. Kaltenbacher.

Regularizing Newton-Kaczmarz methods for nonlinear ill- posed problems.

SIAM J.Numer.Anal., 44:153-182, 2006.

[20] B. Kaltenbacher.

Determination of parameters in nonlinear hyperbolic PDEs via a multiharmonic formulation, used in piezoelectric material characterization.

Math. Meth. Mod. Appl. Sci. (M3AS), 16:869-895, 2006.

[21] B. Kaltenbacher, T. Lahmer, M. Mohr, and M. Kaltenbacher.

PDE based determination of piezoelectric material tensors.

European Journal of Applied Mathematics, 17:383-416, 2006.

[22] B. Kaltenbacher.

Towards global convergence for strongly nonlinear ill-posed problems via a regularizing multilevel approach.

Numerical Functional Analysis and Optimization, 27:637-665, 2006.

[23] B. Kaltenbacher and A. Neubauer.

Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions.

Inverse Problems, 22:1105-1119, 2006.

[24] B. Kaltenbacher.

Regularization by truncated Cholesky factorization: A comparison of four different approaches.

Journal of Complexity, 23:225-244, 2007.

[25] B. Kaltenbacher, T. Lahmer, and V. Schulz.

Optimal measurement selection for piezoelectric material tensor identification.

Inverse Problems in Science and Engineering, 16:369-387, 2008.

[26] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer.

A Convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators.

Inverse Problems, 23:987-1010, 2007.

[27] B. Kaltenbacher.

A note on logarithmic convergence rates for nonlinear Tikhonov regularization.

Journal of Inverse and Ill-Posed Problems, 16:79-88, 2008.

[28] B. Kaltenbacher.

Identification of hystersis in Maxwell's equations.

COMPEL, 26:306-316, 2007. (special issue, OIPE, Sorrento, Sep. 2006).

[29] B. Kaltenbacher and M. Klibanov.

An inverse problem for a nonlinear parabolic equation with applications in population dynamics and magnetics.

SIAM Journal of Mathematical Analysis, 39:1863, 2008.

[30] B. Kaltenbacher and A. Lorenzi.

A uniqueness result for a nonlinear hyperbolic equation.

Applicable Analysis, 86:1397 - 1427, 2007.

[31] B. Kaltenbacher.

Convergence rates of a multilevel method for the regularization of nonlinear ill-posed problems.

Journal of Integral Equations and Applications, 20:201-228, 2008

[32] T. Hegewald, B. Kaltenbacher, M. Kaltenbacher, and R. Lerch.

Efficient modeling of ferro- electric behaviour for the analysis of piezoceramic actuators.

Journal of Intelligent Material Systems and Structures, 2008. doi:10.1177/1045389X07083608.

[33] T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, and R. Lerch.

FEM based determination of real and complex elastic, dielectric and piezoelectric moduli in piezoceramic materials.

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 5:465-475, 2008.

[34] A. Griesbaum, B. Kaltenbacher, and B. Vexler.

Efficient computation of the Tikhonov regularization parameter by goal oriented adaptive discretization.

Inverse Problems, 24, 2008.

[35] G. Nakamura, M. Watanabe, and B. Kaltenbacher.

On the identification of a coeffcient function in a nonlinear wave equation. 2008. Inverse Problems 25 (2009), 035007.

[36] C. Clason, B. Kaltenbacher, and S. Veljović.

Boundary optimal control of the Westervelt and the Kuznetsov equation. Journal of Mathematical Analysis and Applications 356 (2009) 738--751, doi:10.1016/j.jmaa.2009.03.043.

see also: Tech. Rep. SFB-2008-013, SFB Research Center Mathematical Optimization and Applications in Biomedical Sciences, University of Graz (October 2008)

[37] B. Kaltenbacher and I. Lasiecka.

Global existence and exponential decay rates for the Westervelt equation.

Discrete and Continuous Dynamical Systems (DCDS), Series S, vol 2, pp 503-525, 2009.

[38] B. Kaltenbacher and S. Veljović.

Sensitivity analysis of linear and nonlinear lithotripter mo- dels.

European Journal of Applied Mathematics, 22 (2010), pp. 21-43.

see also: Tech. Rep. IOC-21, International Doctorate Program Identification, Optimization and Control with Applications in Modern Technologies (October 2008).

[39] B. Kaltenbacher, F. Schoepfer, and Th. Schuster.

Convergence of some iterative methods for the regularization of nonlinear ill-posed problems in Banach spaces.

Inverse Problems 25 (2009) 065003 (19pp), doi:10.1088/0266-5611/25/6/065003.

see also: Stuttgarter Mathematische Berichte, 2008-005.

[40] B. Kaltenbacher.

Boundary observability and stabilization for Westervelt type wave equations.

Applied Mathematics and Optimization 62 (2010), pp. 381-410.

[41] D. Cassani, B. Kaltenbacher, and A. Lorenzi.

Direct and inverse problems related to MEMS devices.

Inverse Problems 25 (2009) 105002..

[42] J. Baumeister, B. Kaltenbacher, and A. Leitao.

On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations,

Inverse problems and imaging (IPI) 4 (2010), pp. 335-350.

[43] B. Kaltenbacher.

A convergence analysis of the midpoint rule for first kind Volterra integral equations with noisy data.

Journal of Integral Equations (special issue Ch.W.Groetsch), 22 (2010), pp 313-340.

[44] M. Kaltenbacher, B. Kaltenbacher, T. Hegewald, and R. Lerch.

Enhanced Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials.

Journal of Intelligent Material Systems and Structures, 21 (2010), pp.773-785.

[45] B. Kaltenbacher and B. Hofmann.

Convergence Rates for the Iteratively Regularized Gauss-Newton Method in Banach Spaces

Inverse Problems 26 (2010) 035007.

[46] F. Wein, M. Kaltenbacher, B. Kaltenbacher, G. Leugering, E. Bänsch, and F. Schury,

On the Effect of Self-Penalization of Piezoelectric Composites in Topology Optimization,

Structural and Multidisciplinary Optimization , 2010, doi 10.1007/s00158-010-0570-2

[47] B. Kaltenbacher, I. Lasiecka, and S. Veljović.

Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data,

In J. Escher et al (Eds): Parabolic Problems: Herbert Amann Festschrift, pages 357–387.

Birkhaeuser, Basel, 2011. Progress in Nonlinear Differential Equations and Their Applications, Vol. 60.

[48] B. Kaltenbacher and J. Offtermatt.

A Refinement and Coarsening Indicator Algorithm for Finding Sparse Solutions of Inverse Problems,

Inverse problems and Imaging (IPI) 5 (2011), pp. 391-406.

[49] B. Kaltenbacher and H. Walk.

On Convergence of Local Averaging Regression Function Estimates for the Regularization of Inverse Problems,

Inverse problems 27 (2011), 035007 doi: 10.1088/0266-5611/27/3/035007

[50] B. Kaltenbacher, I. Lasiecka.

An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay.

Mathematische Nachrichten, 285(2-3):295–321, 2012. DOI 10.1002/mana.201000007.

[51] B. Kaltenbacher, I. Lasiecka.

Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,

DCDS Supplement, Proceedings of the 8th AIMS Conference, 763-773, 2011.

[52] B. Kaltenbacher and J. Offtermatt.

A convergence analysis of regularization by discretization in preimage space.

Mathematics of Computation. 81 (2012) 2049-2069.

[53] B. Kaltenbacher and W. Polifke.

Some regularization methods for a thermoacoustic inverse problem

Journal of Inverse and Ill-Posed Problems (special issue M.V.Klibanov), 18 (2011), pp.997-1011.

[54] B. Kaltenbacher, A. Kirchner, and B. Vexler.

Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems.

Inverse Problems, 27:125008, 2011.

[55] B. Kaltenbacher, I. Lasiecka, and R. Marchand.

Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound.

Control and Cybernetics 40 (2012), pp. 971-989. (invited volume).

[56] B. Kaltenbacher, I. Lasiecka, and M. Pospieszalska.

Wellposedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thompson equation arising in high intensity ultrasound.

M3AS, 22 (2012) 1250035

[57]B. Kaltenbacher.

Convergence rates for the iteratively regularized Landweber iteration in Banach space.

In Proceedings of the 25th IFIP TC7 Conference on System Modeling and Optimization, D. Hömber and F.Tröltzsch, eds., Springer, Berlin, New York, 2012. refereed.

[58] B. Kaltenbacher, M. Kaltenbacher, and I. Sim.

Perfectly matched layer technique for the second order wave equation in time domain.

Journal of Computational Physics 235:407-422, 2013.

[59] C. Clason and B. Kaltenbacher.

On the use of state constraints in optimal control of singular PDEs.

System & Control Letters 62:48-54, 2013.

[60] C. Clason and B. Kaltenbacher.

Avoiding degeneracy in the Westervelt equation by state constrained optimal control.

Evolution Equations and Control Theory (EECT) 2:281-300, 2013.

[61] B. Kaltenbacher and I. Tomba.

Convergence rates for an iteratively regularized Newton-Landweber iteration in Banach space.

Inverse Problems, 29 025010 doi:10.1088/0266-5611/29/2/025010 2013.

[62] C. Clason and B. Kaltenbacher.

Optimal control of a singular PDE modeling transient MEMS with control or state constraints,

Journal of Mathematical Analysis and Applications 410:455-468, 2014.

[63] B. Kaltenbacher, A. Kirchner, and B. Veljović.

Goal-oriented adaptvity in the IRGNM for parameter identification in PDEs I: reduced formulation

Inverse Problems 30 (2014) 045001

[64] B. Kaltenbacher, A. Kirchner, and B. Vexler.

Goal-oriented adaptvity in the IRGNM for parameter identification in PDEs II: all-at-once formulations

Inverse Problems 30 (2014) 045002

[65] R. Brunnhuber, B.Kaltenbacher and P. Radu.

Relaxation of regularity for the Westervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling,

Evolution Equations and Control Theory EECT, 3 (2014), 595-626.

[66] R. Brunnhuber and B.Kaltenbacher.

Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton rotational model equation,

Discrete and Continuous Dynamical System – A DCDS-A 34 (2014), 4515-4535.

[67] B.Kaltenbacher, V. Nikolić and M. Thalhammer

Efficient time integration methods based on operator splitting and application to the Westervelt equation,

IMA Journal of Numerical Analysis (2014), doi:10.1093/imanum/dru029, 33 pages.

[68] B. Kaltenbacher

A convergence rates result for an iteratively regularized Gauss-Newton-Halley method in Banach space,

Inverse Problems 31 (2015) 015007.

[69] B. Kaltenbacher

An iteratively regularized Gauss-Newton-Halley method for solving nonlinear illposed problems.

Numerische Mathematik 131(2015) 33-57.

[70] B. Kaltenbacher and I.Tomba

Enhanced choice of the parameters in an iteratively regularized Newton-Landweber iteration in Banach space.

In Dynamical Systems, Differential Equations and Applications; AIMS Proceedings, pages 686-695, 2015. refereed, (AIMS Conference 2014, Madrid).

[71] I. Shevchenko and B. Kaltenbacher.

Absorbing boundary conditions for the Westervelt equation.

In Dynamical Systems, Differential Equations and Applications; AIMS Proceedings, p. 1000-1008, 2015. refereed, (AIMS Conference 2014, Madrid).

[72] I. Shevchenko and B. Kaltenbacher.

Absorbing boundary conditions for nonlinear acoustics: The Westervelt equation.

Journal of Computational Physics 302(2015) 200-221.

[73] V. Nikolić and B. Kaltenbacher.

On higher regularity for the Westervelt equation with strong nonlinear damping.

Applicable Analysis, (2015) 1-17.

[74] B. Kaltenbacher.

Mathematics of Nonlinear Acoustics.

Evolution Equations and Control Theory(EECT), 4(2015) 447-491.

[75] B. Kaltenbacher and P. Krejčí.

A thermodynamically consistent phenomenological model for ferroelectric and ferroelastic hysteresis.

ZAMM - Journal of Applied Mathematics and Mechanics, published online Dec 2015, doi:10.1002/zamm.201400292

[76] U. Hämarik, B. Kaltenbacher, U. Kangro, and E. Resmerita.

Regularization by discretization in Banach spaces

Inverse Problems 32 (2016) 035004, doi:10.1088/0266-5611/32/3/035004

[77] R. Boiger and B. Kaltenbacher.

An online parameter identification method for time dependent partial differential equations.

Inverse Problems 32 (2016) 045006, doi:10.1088/0266-5611/32/4/045006.

[78] V. Nikolić and B. Kaltenbacher.

Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy.

Applied Mathematics and Optimization, published online March 2016, doi:10.1007/s00245-016-9340-x

[79] B. Kaltenbacher, E. Resmerita, and F. Rendl.

Computing quasisolutions of nonlinear inverse problems via efficient minimization of trust region problems.

Journal of Inverse and Ill-Posed Problems, published online March 2016, doi:10.1515/jiip-2015-00872016.

[80] B. Kaltenbacher and Gunther Peichl

The shape derivative for an optimization problem in lithotripsy.

Evolution Equations and Control Theory(EECT) 5(2016), 399-430.

[81] B. Hofmann, B. Kaltenbacher, and E. Resmerita.

Lavrentiev's regularization method in Hilbert spaces revisited.

Inverse Problems and Imaging 10 (2016), 741-764.

[82] C. Clason, B. Kaltenbacher, and D. Wachsmuth.

Functional error estimators for the adaptive discretization of inverse problems.

Inverse Problems 32 (2016), 104004.

[83] K.Bredies, B. Kaltenbacher, and E. Resmerita.

The least error method for sparse solution reconstruction.

Inverse Problems 32 (2016), 094001.

[84] B. Kaltenbacher.

Regularization based on all-at-once formulations for inverse problems.

SIAM Journal of Numerical Analysis, 54 (2016), 2594-2618.

[85] B. Kaltenbacher.

Well-posedness of a general higher order model in nonlinear acoustics

Applied Mathematics Letters 63 (2016), 21-27.

[86] R. Boiger, J. Hasenauer, S. Hroß, and B. Kaltenbacher.

Integration based profile likelihood calculation for PDE constrained parameter estimation problems.

Inverse Problems 32 (2016), 125009.

[87] F. Fröhlich, B. Kaltenbacher, F. Theis, and J. Hasenauer.

Scalable parameter estimation for genome-scale biochemical reaction networks.

PLOS Computational Biology 13, e1005331 2017.

[88] M. Hinze, B.Kaltenbacher, and T.N.T. Quyen.

Identifying conductivity in electrical impedance tomography with total variation regularization

Numerische Mathematik 2017

[89] B. Kaltenbacher.

All-at-once versus reduced iterative methods for time dependent inverse problems

Inverse Problems 33 064002 2017

[1] B. Kaltenbacher, M. Kaltenbacher, R. Lerch, and R. Simkovics

Identification of material tensors for piezoceramic materials

In Proceedings of the IEEE Ultrasonics Symposium, volume 2, pages 1033-1036. IEEE, 2000

[2] M. Kaltenbacher, B. Kaltenbacher, R. Simkovics, and R. Lerch

Determination of piezoelectric material parameters using a combined measurement and simulation technique

In Proceedings of the IEEE Ultrasonics Symposium, pages 1023-1026. IEEE, 2001

[3] B. Kaltenbacher, M. Kaltenbacher, R. Lerch, R. Simkovics, and S. Reitzinger

Determination of Material Parameters Based on Field Computations and Regularized Iterative Inversion

In Proceedings of MATHMOD. MATHMOD, 2003. (Wien)

[4] B. Kaltenbacher, M. Hofer, M. Kaltenbacher, and R. Lerch

Identification of material nonlinearities in piezoelectric ceramics

In Proceedings of the IEEE Ultrasonics Symposium. IEEE, 2003. (Honolulu, 05.-08.10.2003)

[5] B. Kaltenbacher, M. Hofer, M. Kaltenbacher, and R. Lerch

Piezoelectric material nonlinearity identification via multiharmonic finite elements

In Proceedings of the IEEE Ultrasonics Symposium, 2004

[6] B. Kaltenbacher

Identification of models for nonlinearity and hysteresis in piezoelectricity

In D.R.J. Owen, E. Onate, and B. Suarez, eds., Computational Plasticity/ COMPLAS VIII,, pages 657-660. CIMNE, 2005. (Barcelona)