Methods for inverse problems:
VI. Using higher derivatives: Halley's method

Barbara Kaltenbacher, University of Klagenfurt, Austria
nonlinear inverse problem

$$
F(x)=y
$$

nonlinear inverse problem

$$
F(x)=y
$$

such as parameter identification in PDE

$$
A(x, u)=0 \quad y=C u
$$

nonlinear inverse problem

$$
F(x)=y
$$

such as parameter identification in PDE

$$
A(x, u)=0 \quad y=C u
$$

e.g., identification of space dependent diffusion a in elliptic PDE

$$
\left\{\begin{array}{l}
-\nabla(a \nabla u)=f \text { in } \Omega \\
u=g \text { on } \partial \Omega
\end{array}\right.
$$

$$
y=u \text { or } y=\left.u\right|_{\omega} \text { or } y=\left.u\right|_{\partial \Omega}
$$

nonlinear inverse problem

$$
F(x)=y
$$

such as parameter identification in PDE

$$
A(x, u)=0 \quad y=C u
$$

e.g., identification of space dependent diffusion a in elliptic PDE

$$
\left\{\begin{array}{l}
-\nabla(a \nabla u)=f \text { in } \Omega \\
u=g \text { on } \partial \Omega
\end{array} \quad y=u \text { or } y=\left.u\right|_{\omega} \text { or } y=\left.u\right|_{\partial \Omega}\right.
$$

e.g., identification of space dependent potential c in elliptic PDE

$$
\left\{\begin{array}{l}
-\Delta u+c u=f \text { in } \Omega \\
u=g \text { on } \partial \Omega
\end{array} \quad y=u \text { or } y=\left.u\right|_{\omega} \text { or } y=\left.u\right|_{\partial \Omega}\right.
$$

Newton's method relies on 1st order Taylor expansion:

$$
y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

Newton's method relies on 1st order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \\
& x_{k+1}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right)
\end{aligned}
$$

Newton's method relies on 1st order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \\
& x_{k+1}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right)
\end{aligned}
$$

F smooth $\rightsquigarrow 2$ nd order Taylor expansion:

$$
y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} F^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

Newton's method relies on 1st order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \\
& x_{k+1}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right)
\end{aligned}
$$

F smooth $\rightsquigarrow 2$ nd order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} F^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2} \\
& x_{k+1}=? \quad \text { quadratic operator equation }
\end{aligned}
$$

Newton's method relies on 1st order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \\
& x_{k+1}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right)
\end{aligned}
$$

F smooth $\rightsquigarrow 2$ nd order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} F^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2} \\
& x_{k+1}=? \quad \text { quadratic operator equation }
\end{aligned}
$$

alternative: intermediate step x_{k+} and Taylor expansion of F^{\prime} :

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { Newton step } \\
& F^{\prime}\left(x_{k+}\right) \approx F^{\prime}\left(x_{k}\right)+F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}\right)=: S_{k} \\
& x_{k+1}=x_{k}+S_{k}^{-1}\left(y-F\left(x_{k}\right)\right) \text { enhanced Newton step }
\end{aligned}
$$

Newton's method relies on 1st order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) \\
& x_{k+1}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right)
\end{aligned}
$$

F smooth $\rightsquigarrow 2$ nd order Taylor expansion:

$$
\begin{aligned}
& y=F(x) \approx F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} F^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2} \\
& x_{k+1}=? \quad \text { quadratic operator equation }
\end{aligned}
$$

alternative: intermediate step x_{k+} and Taylor expansion of F^{\prime} :

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { Newton step } \\
& F^{\prime}\left(x_{k+}\right) \approx F^{\prime}\left(x_{k}\right)+F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}\right)=: S_{k} \\
& x_{k+1}=x_{k}+S_{k}^{-1}\left(y-F\left(x_{k}\right)\right) \text { enhanced Newton step }
\end{aligned}
$$

uses $F^{\prime \prime}$, converges cubically in well-posed case $\rightsquigarrow 2$ nd order method Halley's method, method of tangent hyperbolas [Brown'77], [Döring'70], [Ren\&Argyros'12] well-posed [Hettlich\&Rundell'00] ill-posed problems

Why not just do a second Newton step?
two Newton steps:

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) 1 \text { st Newton step } \\
& x_{k+1}=x_{k+}+F^{\prime}\left(x_{k+}\right)^{-1}\left(y-F\left(x_{k+}\right)\right) \text { 2nd Newton step }
\end{aligned}
$$

intermediate step x_{k+} and Taylor expansion of F^{\prime} :

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) 1 \text { st Newton step } \\
& F^{\prime}\left(x_{k+}\right) \approx F^{\prime}\left(x_{k}\right)+F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}, \cdot\right)=: S_{k} \\
& x_{k+1}=x_{k}+S_{k}^{-1}\left(y-F\left(x_{k}\right)\right) \text { enhanced Newton step }
\end{aligned}
$$

two Newton steps:

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { 1st Newton step } \\
& x_{k+1}=x_{k+}+F^{\prime}\left(x_{k+}\right)^{-1}\left(y-F\left(x_{k+}\right)\right) \text { 2nd Newton step }
\end{aligned}
$$

intermediate step x_{k+} and Taylor expansion of F^{\prime} :

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { 1st Newton step } \\
& F^{\prime}\left(x_{k+}\right) \approx F^{\prime}\left(x_{k}\right)+F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}, \cdot\right)=: S_{k} \\
& x_{k+1}=x_{k}+S_{k}^{-1}\left(y-F\left(x_{k}\right)\right) \text { enhanced Newton step }
\end{aligned}
$$

two Newton steps:

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { 1st Newton step } \\
& x_{k+1}=x_{k+}+F^{\prime}\left(x_{k+}\right)^{-1}\left(y-F\left(x_{k+}\right)\right) \text { 2nd Newton step }
\end{aligned}
$$

intermediate step x_{k+} and Taylor expansion of F^{\prime} :

$$
\begin{aligned}
& x_{k+}=x_{k}+F^{\prime}\left(x_{k}\right)^{-1}\left(y-F\left(x_{k}\right)\right) \text { 1st Newton step } \\
& F^{\prime}\left(x_{k+}\right) \approx F^{\prime}\left(x_{k}\right)+F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}, \cdot\right)=: S_{k} \\
& x_{k+1}=x_{k}+S_{k}^{-1}\left(y-F\left(x_{k}\right)\right) \text { enhanced Newton step }
\end{aligned}
$$

After 1st Newton step $F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}, \cdot\right)$ is cheaper to evaulate than $F^{\prime}\left(x_{k+}\right), F\left(x_{k+}\right)$!
e.g., parameter identification in PDEs:

$$
F\left(x_{k}\right)=C \mathcal{S}\left(x_{k}\right) \text { with } \mathcal{S}\left(x_{k}\right)=u \text { satisfying } A\left(x_{k}, u\right)=0
$$

derivatives:
$F^{\prime}\left(x_{k}\right) h=C \tilde{u}(h)$
with $\tilde{u}(h)$ satisfying $A_{u}\left(x_{k}, u\right) \tilde{u}=f_{1}(h)$
$F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}, h\right)=C \tilde{\tilde{u}}(h) \quad$ with $\tilde{\tilde{u}}(h)$ satisfying $A_{u}\left(x_{k}, u\right) \tilde{\tilde{u}}=f_{2}(h)$
with

$$
\begin{aligned}
f_{1}(h)= & -A_{x}\left(x_{k}, u\right) h \\
f_{2}(h)= & -A_{x x}\left(x_{k}, u\right)\left(x_{k+}-x_{k}, h\right)-A_{x u}(x, u)\left(h, \tilde{u}\left(x_{k+}-x_{k}\right)\right) \\
& -A_{u x}(x, u)\left(\tilde{u}\left(x_{k+}-x_{k}\right), h\right)-A_{u u}(x, u)\left(\tilde{u}\left(x_{k+}-x_{k}\right), \tilde{u}\right)
\end{aligned}
$$

Same PDE with same parameter for $F^{\prime}\left(x_{k}\right)$ and $F^{\prime \prime}\left(x_{k}\right)\left(x_{k+}-x_{k}\right)$ with different right hand sides
e.g., identification of diffusion in elliptic PDE

$$
\begin{array}{rll}
-\nabla(a \nabla u) & =f & \text { in } \Omega \\
u & =g \quad \text { on } \partial \Omega
\end{array}
$$

from measurements $y=C u$ of u.
$F^{\prime}(a) h=C \mathcal{S}^{\prime}(a) h, F^{\prime \prime}(a)(h, l)=C \mathcal{S}^{\prime \prime}(a)(h, \ell)$
with $\tilde{u}=\mathcal{S}^{\prime}(a) h, \tilde{\tilde{u}}=\mathcal{S}^{\prime \prime}(a)(h, \ell)$ defined by

$$
\begin{array}{rlrl}
-\nabla(a \nabla \tilde{u}) & =\nabla(h \nabla \mathcal{S}(a)) & & \text { in } \Omega \\
\tilde{u} & =0 & & \\
& \text { on } \partial \Omega & \\
-\nabla(a \nabla \tilde{\tilde{u}}) & =\nabla\left(h \nabla \mathcal{S}^{\prime}(a) \ell\right)+\nabla\left(\ell \nabla \mathcal{S}^{\prime}(a) h\right) & & \text { in } \Omega \\
\tilde{\tilde{u}}=0 & & \text { on } \partial \Omega
\end{array}
$$

Systems for $F(a), F^{\prime}(a), F^{\prime \prime}(a)$ contain the same stiffness matrix. Evaluation of $F^{\prime}\left(a_{+}\right)$would require new stiffness matrix.
e.g., identification of potential in elliptic PDE

$$
\begin{aligned}
-\Delta u+c u & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

from measurements $y=C u$ of u.
$F^{\prime}(c) h=C \mathcal{S}^{\prime}(c) h, F^{\prime \prime}(c)(h, \ell)=C \mathcal{S}^{\prime \prime}(c)(h, \ell)$
with $\tilde{u}=\mathcal{S}^{\prime}(c) h, \tilde{\tilde{u}}=\mathcal{S}^{\prime \prime}(c)(h, \ell)$

$$
\begin{array}{rll}
-\Delta \tilde{u}+c \tilde{u} & =h \mathcal{S}(c) & \text { in } \Omega \\
\tilde{u}=0 & \text { on } \partial \Omega \\
-\Delta \tilde{\tilde{u}}+c \tilde{\tilde{u}}=h \mathcal{S}^{\prime}(c) \ell+\ell \mathcal{S}^{\prime}(c) h & \text { in } \Omega \\
\tilde{\tilde{u}}=0 & \text { on } \partial \Omega
\end{array}
$$

Systems for $F(c), F^{\prime}(c), F^{\prime \prime}(c)$ contain the same stiffness matrix. Evaluation of $F^{\prime}\left(c_{+}\right)$would require new stiffness matrix.

Halley's method for ill-posed problems

Halley's method for ill-posed problems in Hilbert spaces

$$
\begin{aligned}
& T_{k}=F^{\prime}\left(x_{k}^{\delta}\right) ; \quad r_{k}=F\left(x_{k}^{\delta}\right)-y^{\delta} \\
& x_{k+}^{\delta}=x_{k}^{\delta}-\left(T_{k}^{*} T_{k}+\beta_{k} I\right)^{-1}\left\{T_{k}^{*} r_{k}+\beta_{k}\left(x_{k}^{\delta}-x_{0}\right)\right\} \\
& S_{k}=T_{k}+\frac{1}{2} F^{\prime \prime}\left(x_{k}^{\delta}\right)\left(x_{k+}^{\delta}-x_{k}^{\delta}, \cdot\right) \\
& x_{k+1}^{\delta}=x_{k}-\left(S_{k}^{*} S_{k}+\alpha_{k} I\right)^{-1}\left\{S_{k}^{*} r_{k}+\alpha_{k}\left(x_{k}^{\delta}-x_{0}\right)\right\}
\end{aligned}
$$

with a priori fixed sequences of regularization parameters $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$, $\left(\beta_{k}\right)_{k \in \mathbb{N}}$ satisfying

$$
\alpha_{k} \searrow 0, \quad \beta_{k} \searrow 0, \quad 1 \leq \frac{\alpha_{k}}{\alpha_{k+1}} \leq q, \quad 1 \leq \frac{\beta_{k}}{\beta_{k+1}} \leq q
$$

and a priori stopping rule $k_{*}=k_{*}(\delta)$ depending on noise level

$$
\delta \geq\left\|y^{\delta}-y\right\|
$$

[Hettlich\&Rundell'00]: Levenberg-Marquardt type a posteriori regularization parameter choice, Hilbert space setting, convergence without rates,

Halley's method for ill-posed problems in Banach spaces

$$
\begin{aligned}
& T_{k}=F^{\prime}\left(x_{k}^{\delta}\right) ; \quad r_{k}=F\left(x_{k}^{\delta}\right)-y^{\delta} \\
& x_{k+}^{\delta} \in \operatorname{argmin}_{x} \frac{1}{\mathrm{r}}\left\|T_{k}\left(x-x_{k}^{\delta}\right)+r_{k}\right\|^{\mathrm{r}}+\frac{\beta_{k}}{\mathrm{p}}\left\|x-x_{0}\right\|^{\mathrm{p}} \\
& S_{k}=T_{k}+\frac{1}{2} F^{\prime \prime}\left(x_{k}^{\delta}\right)\left(x_{k+}^{\delta}-x_{k}^{\delta}, \cdot\right) \\
& x_{k+1}^{\delta} \in \operatorname{argmin}_{x} \frac{1}{\mathrm{r}}\left\|S_{k}\left(x-x_{k}^{\delta}\right)+r_{k}\right\|^{\mathrm{r}}+\frac{\alpha_{k}}{\mathrm{p}}\left\|x-x_{k}^{\delta}\right\|^{\mathrm{p}}
\end{aligned}
$$

with $\mathrm{p}, \mathrm{r} \in[1, \infty)$
a priori fixed sequences of regularization parameters $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$, $\left(\beta_{k}\right)_{k \in \mathbb{N}}$ satisfying

$$
\begin{equation*}
\alpha_{k} \searrow 0, \quad \beta_{k} \searrow 0, \quad 1 \leq \frac{\alpha_{k}}{\alpha_{k+1}} \leq q, \quad 1 \leq \frac{\beta_{k}}{\beta_{k+1}} \leq q \tag{1}
\end{equation*}
$$

and a priori stopping rule $k_{*}=k_{*}(\delta)$ depending on noise level

$$
\delta \geq\left\|y^{\delta}-y\right\| .
$$

convergence results

Theorem

Assume that a source condition

$$
x^{\dagger}-x_{0}=\left(T^{*} T\right)^{\mu} v
$$

with $\mu \in\left[\frac{1}{2}, 1\right]$, and $\|v\|$ sufficiently small holds.
Let $F^{\prime \prime}$ be bounded and Lipschitz continuous in a neighborhood of x^{\dagger} and let x_{0} be suffiently close to x^{\dagger}.
Assume that $\beta_{k}=\alpha_{k}$ is chosen so that (1) holds and let k_{*} be chosen as the first index such that

$$
\alpha_{k_{*}}^{\mu+\frac{1}{2}} \leq \tau \delta
$$

with τ sufficiently large.
Then

$$
\left\|x_{k_{*}}^{\delta}-x^{\dagger}\right\|=O\left(\delta^{\frac{2 \mu}{2 \mu+1}}\right) \text { as } \delta \rightarrow 0
$$

If $\delta=0$

$$
\left\|x_{k}^{\delta}-x^{\dagger}\right\|=O\left(\alpha_{k}^{\mu}\right) \text { as } k \rightarrow \infty
$$

Convergence with weak or no regularity of $x^{\dagger}-x_{0}$

 source condition$$
\begin{equation*}
x^{\dagger}-x_{0}=f\left(T^{*} T\right) v \tag{2}
\end{equation*}
$$

with $f:(0, \infty) \rightarrow(0, \infty)$ continuous and strictly increasing with

$$
\begin{equation*}
f(\lambda) \rightarrow 0, \quad \frac{\lambda}{f(\lambda)} \leq C \text { as } \lambda \rightarrow 0, \quad \mu_{f}:=\sup _{\alpha \in\left(0, \alpha_{0}\right]} \frac{f^{\prime}(\alpha) \alpha}{f(\alpha)}<\infty \tag{3}
\end{equation*}
$$

e.g., $f(\lambda)=\log (1 / \lambda)^{p}, \quad f(\lambda)=\lambda^{\mu}, \mu \leq 1$
or no source condition

$$
\begin{equation*}
x^{\dagger}-x_{0} \in \mathcal{N}(T)^{\perp} \tag{4}
\end{equation*}
$$

a priori stopping rule: k_{*} is chosen as the first index such that

$$
\sqrt{\alpha_{k_{*}}} f\left(\alpha_{k_{*}}\right) \leq \tau \delta
$$

with τ sufficiently large and - if we only have (know) (4) - just

$$
\begin{equation*}
k_{*} \rightarrow \infty \quad \frac{\delta}{\sqrt{\alpha_{k_{*}}}} \rightarrow 0 \text { as } \delta \rightarrow 0 \tag{5}
\end{equation*}
$$

Structural condition on F : range invariance condition
$F^{\prime}(\tilde{x})=F^{\prime}(x) R(x, \tilde{x})$ with
$R(x, \tilde{x}) \in \mathcal{L}(X, X),\|R(\tilde{x}, x)-I\| \leq M_{1}\|\tilde{x}-x\| \quad \forall x, \tilde{x} \in \mathcal{B}_{\rho}\left(x^{\dagger}\right)$
$F^{\prime \prime}(x)(h, I)=F^{\prime}(x) R_{2}^{x}(h, I)$ with
$R_{2}^{x}(h, \cdot), R_{2}^{x}(\cdot, l) \in \mathcal{L}(X, X),\left\|R_{2}^{x}\right\| \leq M_{2} \quad \forall x \in \mathcal{B}_{\rho}\left(x^{\dagger}\right), h, l \in X$
e.g., diffusion identification from (complete, partial, boundary) measurements of u in 1-d
e.g., potential identification from (complete, partial, boundary) measurements of u in 3-d

Theorem

Let F satisfy the range invariance condition (6) and let x_{0} be suffiently close to x^{\dagger} and satisfy (4). Assume that $\beta_{k}=\alpha_{k}$, is chosen so that (1) holds and let k_{*} be chosen according to (5).
Then the iterates $x_{k_{*}}^{\delta}$ converge to x^{\dagger} as $\delta \rightarrow 0$.
If a source condition (2) with (3) is satisfied, then the rate

$$
\left\|x_{k_{*}}^{\delta}-x^{\dagger}\right\|=O\left(f\left(\Theta^{-1}(\delta)\right)\right)=O\left(\frac{\delta}{\sqrt{\Theta^{-1}(\delta)}}\right) \text { as } \delta \rightarrow 0
$$

is obtained, where $\Theta(\lambda):=f(\lambda) \sqrt{\lambda}$. If $\delta=0$ we have convergence

$$
\left\|x_{k}^{\delta}-x^{\dagger}\right\|=O\left(f\left(\alpha_{k}\right)\right) \text { as } k \rightarrow \infty
$$

numerical results

Test problem: Potential identification

Identify c in

$$
\begin{array}{rlr}
-\Delta u+\Phi(c) u & =f & \text { in } \Omega \\
u & =g \quad \text { on } \partial \Omega
\end{array}
$$

from measurements $y=C u$ of u,
where $\Phi(\lambda)=\frac{1}{2} \lambda^{2} \mathbb{I}_{[-\bar{c}, \bar{c}]}+\frac{1}{2} \bar{c}(2|\lambda|-\bar{c}) \mathbb{I}_{\mathbb{R} \backslash[-\bar{c}, \bar{c}]}$, so that

$$
c \in L^{2}(\Omega) \quad \Rightarrow \quad \Phi(c) \geq 0 \text { and } \Phi(c) \in L^{2}(\Omega)
$$

$\Omega=(0,1)^{2}$

$$
c\left(x_{1}, x_{2}\right)=1+\frac{1}{2} \xi\left(1-\cos \left(4 \pi x_{1}\right)\right)\left(1-\cos \left(4 \pi x_{2}\right)\right) \mathbb{I}_{\left(0, \frac{1}{2}\right)^{2}}
$$

with $\xi \in\{5,7,10\}$,
starting value $c_{0} \equiv 1$.

Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for $\xi=5$

Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for $\xi=7$

Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for $\xi=10$

Reconstructions（top）from data（bottom）with Gaussian noise of decreasing level

$$
\delta=1 \%
$$

$$
\delta=0.5 \%
$$

$$
\delta=0.25 \%
$$

$$
\delta=0.125 \%
$$

$$
\delta=0 \%
$$

$$
\xi=10
$$

Reconstructions with $Y=L^{2}$ (top) and $Y=L^{1.1}$ (middle) from data (bottom) with impulsive noise of decreasing amount from left to right

Conclusions and Outlook

- higher order methods seem to pay off in parameter identification for PDEs
- existing analysis:
- convergence (rates) in high and low regularity (source condition) case
- convergence rate under benchmark source condition in Banach spaces
\rightarrow several open questions in analysis (rates with a posteriori regularization parameter choice, general rates in Banach spaces,...)
$\rightarrow n$ stage versions of Halley's method

$$
\begin{aligned}
& T_{k}^{0}=0 \quad r_{k}=F\left(x_{k}^{\delta}\right)-y^{\delta} \\
& \text { for } j=1, \ldots n \text { do } \\
& \quad T_{k}^{j}=T_{k}^{j-1}+\sum_{m=1}^{j} \frac{1}{m!} F^{(m)}\left(x_{k}^{\delta}\right)\left(\left(x_{k+\frac{m-1}{n}}^{n}-x_{k}^{\delta}\right)^{m-1}, \cdot\right) \\
& x_{k+\frac{j}{n}}^{\delta}=x_{k}^{\delta}-\left(T_{k}^{j^{*}} T_{k}^{j}+\alpha_{k}^{j} I\right)^{-1}\left\{T_{k}^{j^{*}} r_{k}+\alpha_{k}^{j}\left(x_{k}^{\delta}-x_{0}\right)\right\}
\end{aligned}
$$

