Methods for Inverse Problems: IV. Newton type methods

Barbara Kaltenbacher, University of Klagenfurt, Austria

overview

(1) Newton's method
(2) Levenberg-Marquardt

- Monotonicity of the errors
- Convergence
- Convergence rates
(3) Iteratively regularized Gauss-Newton method (IRGNM)
- Convergence and convergence rates

Newton's method

$$
\begin{equation*}
F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)=y^{\delta}-F\left(x_{k}^{\delta}\right) \tag{1}
\end{equation*}
$$

formulation as least squares problem

$$
\min _{x \in \mathcal{D}(F)}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x-x_{k}^{\delta}\right)\right\|^{2}
$$

\rightsquigarrow ill-posedness \rightsquigarrow apply Tikhonov regularization:
Levenberg-Marquardt method:

$$
\begin{equation*}
\min _{x \in \mathcal{D}(F)}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x-x_{k}^{\delta}\right)\right\|^{2}+\alpha_{k}\left\|x-x_{k}^{\delta}\right\|^{2}, \tag{2}
\end{equation*}
$$

Iteratively regularized Gauss-Newton method (IRGNM)

$$
\begin{equation*}
\min _{x \in \mathcal{D}(F)}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x-x_{k}^{\delta}\right)\right\|^{2}+\alpha_{k}\left\|x-x_{0}\right\|^{2} \tag{3}
\end{equation*}
$$

choice of sequence α_{k} and convergence anaylsis different for both methods.

Levenberg-Marquardt

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{k}^{\delta}+\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1} F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right), \tag{4}
\end{equation*}
$$

Choice of α_{k} :

$$
\begin{equation*}
\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}\left(\alpha_{k}\right)-x_{k}^{\delta}\right)\right\|=q\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\| \tag{5}
\end{equation*}
$$

for some $q \in(0,1) \rightsquigarrow$ inexact Newton method.
(5) has a unique solution α_{k} provided that for some $\gamma>1$

$$
\begin{equation*}
\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x^{\dagger}-x_{k}^{\delta}\right)\right\| \leq \frac{q}{\gamma}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\| \tag{6}
\end{equation*}
$$

which can be guaranteed by a condition on $F: \forall x, \tilde{x} \in \mathcal{B}_{2 \rho}\left(x_{0}\right) \subseteq \mathcal{D}(F)$

$$
\begin{equation*}
\left\|F(x)-F(\tilde{x})-F^{\prime}(x)(x-\tilde{x})\right\| \leq c\|x-\tilde{x}\|\|F(x)-F(\tilde{x})\| \tag{7}
\end{equation*}
$$

Choice of stopping index k_{*} : discrepancy principle:

$$
\begin{equation*}
\left\|y^{\delta}-F\left(x_{k_{*}}^{\delta}\right)\right\| \leq \tau \delta<\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\|, \quad 0 \leq k<k_{*} \tag{8}
\end{equation*}
$$

Levenberg-Marquardt: Monotonicity of the errors

Theorem

Let $0<q<1<\gamma$ and assume that $F(x)=y$ has a solution and that (6) holds so that α_{k} can be defined via (5). Then, the following estimates hold:

$$
\begin{gather*}
\left\|x_{k}^{\delta}-x^{\dagger}\right\|^{2}-\left\|x_{k+1}^{\delta}-x^{\dagger}\right\|^{2} \geq\left\|x_{k+1}^{\delta}-x_{k}^{\delta}\right\|^{2} \tag{9}\\
\left\|x_{k}^{\delta}-x^{\dagger}\right\|^{2}-\left\|x_{k+1}^{\delta}-x^{\dagger}\right\|^{2} \\
\geq \frac{2(\gamma-1)}{\gamma \alpha_{k}}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)\right\|^{2} \tag{10}\\
\geq \frac{2(\gamma-1)(1-q) q}{\gamma\left\|F^{\prime}\left(x_{k}^{\delta}\right)\right\|^{2}}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\|^{2} . \tag{11}
\end{gather*}
$$

Levenberg-Marquardt: Monotonicity proof

$$
\begin{aligned}
& K_{k}:= F^{\prime}\left(x_{k}^{\delta}\right) \\
& x_{k+1}^{\delta}-x_{k}^{\delta}=K_{k}^{*}\left(K_{k} K_{k}^{*}+\alpha_{k} l\right)^{-1}\left(y_{k}^{\delta}-F\left(x_{k}^{\delta}\right)\right) \\
&\left.\alpha_{k}^{*}+\alpha_{k} I\right)^{-1}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)=y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right), \\
&\left\|x_{k+1}^{\delta}-x^{\dagger}\right\|^{2}-\left\|x_{k}^{\delta}-x^{\dagger}\right\|^{2} \\
&= 2\left\langle x_{k+1}^{\delta}-x_{k}^{\delta}, x_{k}^{\delta}-x^{\dagger}\right\rangle+\left\|x_{k+1}^{\delta}-x_{k}^{\delta}\right\|^{2} \\
&=\left\langle\left(K_{k} K_{k}^{*}+\alpha_{k} I\right)^{-1}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right),\right. \\
&\left.2 K_{k}\left(x_{k}^{\delta}-x^{\dagger}\right)+\left(K_{k} K_{k}^{*}+\alpha_{k} I\right)^{-1} K_{k} K_{k}^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)\right\rangle \\
&=-2 \alpha_{k}\left\|\left(K_{k} K_{k}^{*}+\alpha_{k} I\right)^{-1}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)\right\|^{2} \\
&-\left\|\left(K_{k}^{*} K_{k}+\alpha_{k} I\right)^{-1} K_{k}^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)\right\|^{2} \\
& \quad+2\left\langle\left(K_{k} K_{k}^{*}+\alpha_{k} I\right)^{-1}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right), y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x^{\dagger}-x_{k}^{\delta}\right)\right\rangle \\
& \leq-\left\|x_{k+1}^{\delta}-x_{k}^{\delta}\right\|^{2}-2 \alpha_{k}^{-1}\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)\right\| . \\
& \quad\left(\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)\right\|-\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x^{\dagger}-x_{k}^{\delta}\right)\right\|\right) \\
& \| y^{\delta}- F\left(x_{k}^{\delta}\right)-K_{k}\left(x^{\dagger}-x_{k}^{\delta}\right)\left\|\leq \gamma^{-1}\right\| y^{\delta}-F\left(x_{k}^{\delta}\right)-K_{k}\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right) \| .
\end{aligned}
$$

Levenberg-Marquardt method: Convergence

Theorem

Let $0<q<1$ and assume that $F(x)=y$ is solvable in $\mathcal{B}_{\rho}\left(x_{0}\right)$, that F^{\prime} is uniformly bounded in $\mathcal{B}_{\rho}\left(x^{\dagger}\right)$, and that the Taylor remainder of F satisfies (7) for some $c>0$. Then the Levenberg-Marquardt method with exact data $y^{\delta}=y$, $\left\|x_{0}-x^{\dagger}\right\|<q / c$ and α_{k} determined from (5), converges to a solution of $F(x)=y$ as $k \rightarrow \infty$.

Theorem

Let the assumptions of Theorem 2 hold. Additionally let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the stopping rule (8) with $\tau>1 / q$ and let $\left\|x_{0}-x^{\dagger}\right\|$ be sufficiently small. Then for some solution x_{*} of $F(x)=y$

$$
k_{*}\left(\delta, y^{\delta}\right)=O(1+|\ln \delta|) \text { and }\left\|x_{k_{*}}^{\delta}-x_{*}\right\| \rightarrow 0 \text { as } \delta \rightarrow 0
$$

Levenberg-Marquardt method: Convergence rates

Theorem

Let a solution x^{\dagger} of $F(x)=y$ exist and let

$$
\begin{align*}
F^{\prime}(x)= & R_{x} F^{\prime}\left(x^{\dagger}\right) \text { and }\left\|I-R_{x}\right\| \leq c_{R}\left\|x-x^{\dagger}\right\|, x \in \mathcal{B}_{\rho}\left(x_{0}\right) \subseteq \mathcal{D}(F), \tag{13}\\
& x^{\dagger}-x_{0}=\left(F^{\prime}\left(x^{\dagger}\right)^{*} F^{\prime}\left(x^{\dagger}\right)\right)^{\mu} v, \quad v \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \tag{12}
\end{align*}
$$

hold with some $0<\mu \leq 1 / 2$ and $\|v\|$ sufficiently small. Moreover, let α_{k} and k_{*} be chosen according to (5) and (8), respectively with $\tau>2$ and $1>q>1 / \tau$. Then the Levenberg-Marquardt iterates defined by (4) remain in $\mathcal{B}_{\rho}\left(x_{0}\right)$ and converge with the rate

$$
\left\|x_{k_{*}^{\delta}}^{\delta}-x^{\dagger}\right\|=O\left(\delta^{\frac{2 \mu}{2 \mu+1}}\right) .
$$

[Hanke 2009]

Remarks

- rates with a priori α_{k}, k_{*} :

$$
\begin{gathered}
\alpha_{k}=\alpha_{0} q^{k}, \quad \text { for some } \quad \alpha_{0}>0, \quad q \in(0,1), \\
c\left(k_{*}+1\right)^{-(1+\varepsilon)} \alpha_{k_{*}}^{\mu+\frac{1}{2}} \leq \delta<c(k+1)^{-(1+\varepsilon)} \alpha_{k}^{\mu+\frac{1}{2}}, \quad 0 \leq k<k_{*}, \\
k_{*}=O(1+|\ln \delta|), \quad\left\|x_{k_{*}}^{\delta}-x^{\dagger}\right\|=O\left(\left(\delta(1+|\ln \delta|)^{(1+\varepsilon)}\right)^{\frac{2 \mu}{2 \mu+1}}\right) .
\end{gathered}
$$

[BK\&Neubauer\&Scherzer 2008]

- generalization to other regularization methods (e.g., CG) in place of Tikhonov [Hanke 1997], [Rieder 1999, 2001, 2005]

Iteratively regularized Gauss-Newton method (IRGNM)

$x_{k+1}^{\delta}=x_{k}^{\delta}+\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1}\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)+\alpha_{k}\left(x_{0}-x_{k}^{\delta}\right)\right)$.
a-priori choice of α_{k} :

$$
\begin{equation*}
\alpha_{k}>0, \quad 1 \leq \frac{\alpha_{k}}{\alpha_{k+1}} \leq r, \quad \lim _{k \rightarrow \infty} \alpha_{k}=0, \tag{15}
\end{equation*}
$$

for some $r>1$.
a-priori or a posteriori choice of k_{*}

$$
\begin{equation*}
\left\|y^{\delta}-F\left(x_{k_{*}}^{\delta}\right)\right\| \leq \tau \delta<\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\|, \quad 0 \leq k<k_{*}, \tag{16}
\end{equation*}
$$

[Bakushinski 1992], see also the book [Bakushinski\&Kokurin 2004];
[BK\&Neubauer\&Scherzer 1997], see also the book [BK\& Neubauer\&Scherzer 2008

IRGNM: Convergence and convergence rates: idea of proof

key idea:
$\left\|x_{k+1}^{\delta}-x^{\dagger}\right\| \approx \alpha_{k}^{\mu} w_{k}(\mu)$ with $w_{k}(s)$ as in the following lemma.

Lemma

Let $K \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $s \in[0,1]$, and let $\left\{\alpha_{k}\right\}$ be a sequence satisfying $\alpha_{k}>0$ and $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$. Then it holds that

$$
\begin{equation*}
w_{k}(s):=\alpha_{k}^{1-s}\left\|\left(K^{*} K+\alpha_{k} l\right)^{-1}\left(K^{*} K\right)^{s} v\right\| \leq s^{s}(1-s)^{1-s}\|v\| \leq\|v\| \tag{17}
\end{equation*}
$$

and that

$$
\lim _{k \rightarrow \infty} w_{k}(s)= \begin{cases}0, & 0 \leq s<1 \\ \|v\|, & s=1\end{cases}
$$

for any $v \in \mathcal{N}(A)^{\perp}$.

IRGNM: Convergence and convergence rates: idea of proof

Indeed, in the linear and noiseless case $(F(x)=K x, \delta=0)$ we get from (14) using $K x^{\dagger}=y$ and (13)

$$
\begin{aligned}
& x_{k+1}-x^{\dagger} \\
& \quad=x_{k}-x^{\dagger}+\left(K^{*} K+\alpha_{k} I\right)^{-1}\left(K^{*} K\left(x^{\dagger}-x_{k}\right)+\alpha_{k}\left(x_{0}-x^{\dagger}+x^{\dagger}-x_{k}\right)\right) \\
& \quad=-\alpha_{k}\left(K^{*} K+\alpha_{k} I\right)^{-1}\left(K^{*} K\right)^{\mu} v
\end{aligned}
$$

To take into account noisy data and nonlinearity, we rewrite (14) as

$$
\begin{aligned}
x_{k+1}^{\delta}-x^{\dagger}= & -\alpha_{k}\left(K^{*} K+\alpha_{k} I\right)^{-1}\left(K^{*} K\right)^{\mu} v \\
& -\alpha_{k}\left(K_{k}^{*} K_{k}+\alpha_{k} I\right)^{-1}\left(K^{*} K-K_{k}^{*} K_{k}\right) \\
& \left(K^{*} K+\alpha_{k} I\right)^{-1}\left(K^{*} K\right)^{\mu} v \\
& +\left(K_{k}^{*} K_{k}+\alpha_{k} I\right)^{-1} K_{k}^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)+K_{k}\left(x_{k}^{\delta}-x^{\dagger}\right)\right) .
\end{aligned}
$$

where we set $K_{k}:=F^{\prime}\left(x_{k}^{\delta}\right), K:=F^{\prime}\left(x^{\dagger}\right)$.

IRGNM: Convergence and convergence rates

Theorem
Let $\mathcal{B}_{2 \rho}\left(x_{0}\right) \subseteq \mathcal{D}(F)$ for some $\rho>0$, (15),

$$
\begin{aligned}
F^{\prime}(\tilde{x}) & =R(\tilde{x}, x) F^{\prime}(x)+Q(\tilde{x}, x) \\
\|I-R(\tilde{x}, x)\| & \leq c_{R}, \quad\|Q(\tilde{x}, x)\| \leq c_{Q}\left\|F^{\prime}\left(x^{\dagger}\right)(\tilde{x}-x)\right\|
\end{aligned}
$$

and

$$
x^{\dagger}-x_{0}=\left(F^{\prime}\left(x^{\dagger}\right)^{*} F^{\prime}\left(x^{\dagger}\right)\right)^{\mu} v, \quad v \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp}
$$

for some $0 \leq \mu \leq 1 / 2$, and let $k_{*}=k_{*}(\delta)$ be chosen according to the discrepancy principle (16) with $\tau>1$. Moreover, we assume that $\left\|x_{0}-x^{\dagger}\right\|,\|v\|, 1 / \tau, \rho$, and c_{R} are sufficiently small. Then we obtain the rates

$$
\left\|x_{k_{*}}^{\delta}-x^{\dagger}\right\|= \begin{cases}o\left(\delta^{\frac{2 \mu}{2 \mu+1}}\right), & 0 \leq \mu<\frac{1}{2} \\ O(\sqrt{\delta}), & \mu=\frac{1}{2}\end{cases}
$$

For convergence (without rates) the tangential cone condition suffices.

Remarks

- The same convergence rates result can be shown with the a priori stopping rule

$$
\begin{equation*}
k_{*} \rightarrow \infty \quad \text { and } \quad \eta \geq \delta \alpha_{k_{*}}^{-\frac{1}{2}} \rightarrow 0 \text { as } \delta \rightarrow 0 \tag{19}
\end{equation*}
$$

for $\mu=0$ and

$$
\begin{equation*}
\eta \alpha_{k_{*}}^{\mu+\frac{1}{2}} \leq \delta<\eta \alpha_{k}^{\mu+\frac{1}{2}}, \quad 0 \leq k<k_{*} \tag{20}
\end{equation*}
$$

even for $0<\mu \leq 1$.

- The a priori result remains valid under the alternative weak nonlinearity condition

$$
\begin{equation*}
F^{\prime}(\tilde{x})=F^{\prime}(x) R(\tilde{x}, x) \quad \text { and } \quad\|I-R(\tilde{x}, x)\| \leq c_{R}\|\tilde{x}-x\| \tag{21}
\end{equation*}
$$

for $x, \tilde{x} \in \mathcal{B}_{2 \rho}\left(x_{0}\right)$ and some positive constant c_{R}.

Further remarks

- logarithmic rates: [Hohage 1997]
- generalization to regularization methods $R_{\alpha}\left(F^{\prime}(x)\right) \approx F^{\prime}(x)^{\dagger}$ in place of Tikhonov [BK 1997]

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{0}+R_{\alpha_{k}}\left(F^{\prime}\left(x_{k}^{\delta}\right)\right)\left(y^{\delta}-F\left(x_{k}^{\delta}\right)-F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{0}-x_{k}^{\delta}\right)\right) \tag{22}
\end{equation*}
$$

- continuous version [BK\&Neubauer\&Ramm 2002]
- projected version for constrained problems [BK\&Neubauer 2006]
- analysis with stochastic noise [Bauer\&Hohage\&Munk 2009]
- analysis in Banach space [Bakushinski\&Konkurin 2004], [BK\& Schöpfer\&Schuster 2009], [BK\& Hofmann 2010]
- preconditioning [Egger 2007], [Langer 2007]
- quasi Newton methods [BK 1998]

